INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1. The sign or ‘“‘target” for pages apparently lacking from the document
photographed is “‘Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed,
a definite method of ‘‘sectioning’ the material has been followed. It is
custemary to begin filming at the upper left hand corner of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

5.Some pages in any document may have indistinct print. In all cases the best

available copy has been filmed.
Universrg. i
Microfilms
International

300 N. Zeeb Road
Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8322206

Grossman, Elaine Sue

A COMPARISON OF INSTRUCTIONAL METHODS EMPLOYING GRCUP AND
INDIVIDUAL PROGRAMMING IN AN INTRODUCTORY COMPUTER SCIENCE
COURSE

Columbia University Teachers College Ep.D. 1983

University
Microfilms
International s . zeeb Road, Ann Arbor, Mi 48108
Copyright 1983
by
Grossman, Elaine Sue
All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here with acheck mark __ v _.

-t

© ® N O O A O P

e -t
- (=)
- b

12,
13.
14
15.

Glossy photographs or pages

Colored illustrations, paper or print
Photographs with dark background

lllustrations are poor copy

Pages with black marks, not original copy v 4

Print shows through as there is text on both sides of page ______
Indistinct, broken or small print on several pages 3~

Print exceeds margin requirements _____

Tightly bound copy with print lostin spine _____

Computer printout pages with indistinct print_”

Page(s) lacking when material received, and not available from school or
author.

Page(s) . seem to be missing in numbering only as text follows.
Two pages numbered . Text follows.

Curling and wrinkied pages

Other Dissertation contains pages with print at a slant, filmed as received.

University
Microfilms
International

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A COMPARISON OF INSTRUCTIONAL METHODS EMPLOYING GROUFP AND
INDIVIDUAL FROGRAMMING IN AN INTRODUCTORY COMPUTER

SCIENCE COURSE

by

Elaine Sue Grossman

Dissertation Committee:

Professor Bruce Vogeli, Sponsor
Professor J. Fhilip Smith

Approved by the Committee on the Degree of Doctor
of Education

Submitted in partial fulfillment of the
requirements for the Degree of Doctor of Education
in Teachers College, Columbia University

1983

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ARSTRACT

A COMPARISON OF INSTRUCTIONAL METHODS EMFLOYING GROUF AND
INDIVIDUAL FROGRAMMING IN AN INTRODUCTORY COMFUTER

SCIENCE COURSE

Elaine Sue Grossman

The purpcocse of this study was to examine student
programming proficiency, perseverance, efficiency, and
attitude in an intre@uctory computer science programming
course under three different methods of instruction.

The investigation took place at a suburban, private,
four—-year college that services approdimately 10,000
students under a policy of open enrocllment. Three
classes of an undergraduate introductory course in
structured FORTRAN were selected. 0One class (N = 21}
received instruction in the traditional mode employing
individual programming; the second class (N = 20)
received instruction in the experimental mode employing
fixed hetercgenepus student programming groups; anq the

19) raceived instruction in the

third class (N

experimental mode employing variant hetercgeneous student

programming groups.

Analysis of the data revealed the following results:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. The experimental classes achieved higher average
programming assignment grades than the control class,
although the differences on the midterm and final
examinations, taken individually, on which the
experimental classes scored lower than or similarly to
the contreol class, were not found to be significant.

2. Students in the experimental classes completed
significantly more programming assignments on time than
did students in the control class.

. Students in the experimental classes spent more
time writing progams and using terminals than students in
the control class. The number of runs required per
assignment for most students in the experimental classes
was less than that required by students in the control
class. However, none of the efficiency measures produced
significant results.

4, In a posttreatment survey, students in the
evperimental classes demonstrated significantly more
positive attitudes toward computers and computer
programming than did students in the control class.

No significant differential effects were produced by
any of the methods on measures of programming proficiency
or programming efficiency. However, in introductory
courses, in which computer literacy is a main course
cbjective, the more positive effects substantiated for
measures of programming perseverance and attitude in the

classes employing student programming groups lead to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

conclusion that these instructional methods are worthy of
consideration for courses designed for student

populations as described in the study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

@ Copyright Elaine Sue Grossman 1983

All Rights Reserved

i1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

1 wish to express my appreciation to my sponsor, Dr.
Bruce Vegeli, for his guidance and assistance. His
suggestions and perceptive inéights helped me at every
stage of this research.

I am also grateful to the members of my Doctoral
Committee, Dr. J. FPhilip Smith, Dr. Jane Monroe and Dr.
Robert Tavylor, for their valuable comments and
criticisms.

Finally, I wish to express my love and appreciation
to my husband, Harvey, and my children, Jennifer and
Eenjamin, for their sacrifices and support in helping me

accomplish my educational goals.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TAEBLE OF CONTENTS

Fage
ACKNOWLEDGMENT e s vunanunnasvonansnssnswsanannnenas 111
LIST GF TAE‘LESI.IIII.I.I-.llllll.l.llll.lllllll.ll- \./iii

LIST OF FIGURES: e ncasvnnsnnarvuunnsanuassvennnennas #i

Chapter
I. INTRODUCTION. cswssweoenvumaosanvnnnsununnnna 1
= T i)
P OSEBaussssnasunanssssnnnannnnasssnnanns 4

I1I. REVIEW OF LITERATURE RELATED TO GROUF
FROCESS AND ATTITUDE. .aeswvenvnrncnsnannns 10

Group Processessresssanavassnnnesassnannss 1G
DefinitiON.icesesasesusssaconannvannsnunnansn 14
Use in Educationesssessansessasnnvesanwusan igq

Small Group Problem—S8olving in the

ClasslrO0Me s canas s s s v s s aa s anansunsasan 1&
QttitL‘deSll'l.l.l!-lllll'l.l‘llhl.llli‘ll' 25
Attitudes and BehavViOlr se s v esnansesaaanns 25

Attitude Change and GroupSesveusnsnsanas 29
Attitudes and Learning In GroupScscocuas =1
ITI. REVIEW OF LITERATURE RELATED T0
INSTRUCTIONAL METHODS IN COMFUTER
SCIENCE EDUCATION. s s s s unsosvannananesnnsnsa =57

Methods of Instruction Not Employing

Group Programmingescessossssnsnnnennonss 37
The Group Frogramming Instructional
'v‘ethodlll.llllllll.ll....ll.ll...l.l.lll 46

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter

Benefits of Employing Group
Frogramming in Introductory Couwrses...

Frocedural Concerns When Employing
Group Frogramming In Introductory
CO SE S s v annsnanesvasnsnaunnanavanas

Three Recent Studies Evaluating the Group
Frogramming Instructional Method.isswesas

StUdyY Iiveeruweavnanansnsensanmsunnns ana

Study Jlewvewwnnsnansanunununnonunnnnnnns

Study JIliwuvecounsvnmnsunsnnsnnnunnnnnes

IV, PROCEDURES OF THE STUDY.......;.n...........
The Gettingeecsvrossavssannsacwnansonwnvsan

Selection of the Experimental and Control
Cl oSS Sessnssnsunaumausnasnunsnnsnumnnss

Determination of Homogenity of Classes....

Formation of Groups in the Experimental
ClASEE S s erannsensornnsnnnsnnnanaansunna

The Course OUtlin@esvssansonsornnnsansnnns
The Group Programming FIroceSSeseesnnsssnas
Data Collection by BtudentS.secesnasvsvans
Grading ProcedUureS.scevasrsarsansaannansnannna
Attitude HMeasurement.scesevevonssssunnaane

Student Reactions to Cowse and the
Seventh Frogramming Assignment....coesu.

V. ANALYSIS OF THE DATA. . s s aessvanuncsannssnas
Comparison lisecesneeasnesassnnanunusnnunannns
Hypothesis One.vesvenasnsncensnnasanasannse
Hypothesis TwOeiessscwssssnnssnsassunvnne

Hypothesis Thire®.aseevesssnnsnnsasnsnnes

Fage

47

=1

A}
~1

[R5
~1

&l

-
D=2

I
o B3

&4

a4

Be

88

R0

{0

@1

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter

Hypothesis Fowesssvavsewanvnnan

Comparison Ze.esvesssarnwasnununan

Hypothesis Five.seewurevasavsns

Hypothesis Sideesscasarassunna

Hypothesis SevenNussssunaennunns

Hypothesis Eight.osewacvcensnnn

COMparison Seecsvssnansssnannnan

Hypc.‘the‘s:l's l\‘iHEQunn-nn:uuuuunn

Hypothesis TenN.cissnsnnsvvnnns

Hypothesis EleveNcsscannennvns

Hypothesis Twelve.scswsnaennnna

LR I R R A)

LR R A A Y]

LR A A A]

2 m w nne s

The Team Froject and Student Reactions to
the COW SR s uunssnnanannsnnansnanensnsnss

The Most Positive Aspect of The Course..

IND

RHG

ClaSSunannsnansnnanasnnsnusnnsnsnnnns

A LIRSS, cunrsunasnnmsunnenunsannnnns

Cl OS S uwuunssnossnavansnuanmmnanssans

The HMost Negative Aspect of The Course..

IND

FHE

RHG

ClaSS.eusmasssvwnnmnaanunennsasonsnn

ClaSSeassnsssvunnsosarsonnsnansnnns

CloSSuuamwnaasnnannnannnswanssnussn

Selecting From Word-Fair Descriptions...

VI, COMCLUSION. . isssvsnwvsnsnrsvssnesnrsasnnasnnns

CLMMAN Y v o s nwsununusunusamsanasnnenvasnenns

vi

Fage

106

11=

11=

148

150

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter

Fage

ResL‘lts-.-nnluuual-unnna-au.-nn-nnnuluu-u- 1\.::)4

RecommendationS..sersvssnnsssavsasnannannass LOB

REFERE"“C’ES.I.II..H....-...I.I..’l'-llll...l...l-.... 172

REFEF\.E‘\}CE I\jQTESlll.lllnul'll'.ll.lltulllllll.l.'lll 1.85

Appendi x
Appendil x

Appendix

Appendi x

Appendix

Appendi

Appendi

Appendi x
Appendix
Appendix
Appendi x

fppendi s

Appendi x
Appendi o
Appendl ®

Appendix

Survey Entering Students—-Fall 1981... 186
Student Information Sheet.vssesescenna 18

College Flacement Test In Arithmetic

Sl{illS..-.....-.-.---.-.........n-..--

190

College Flacement Test In Elementary
Algebra SHillS.iisvennssnnsnannsennnnss LTS

College Placement Test In Usage.i...«.s 201

The Freliminary Frogramming Froficiency

T‘e’st--l-l---.un.n---..l----.-ll.-.n--l 2‘:’?

BASIC Freogram To Form Three—-member
Heterogeneous GroUpPS. cseesssaeransunas £12

The Course OUtlinGas.wirevesavessnseanse 21
Group Programming ProcesS.csesecrcsnsess 217
Assigned Program Summary Sheet 218
Group Walkthrough Rating Sheet.ssase.. 219

fAssigned Frogram Group Member
Rating Bheel.csssssnsasosnnannasnsannan 20U

The Midterm ExaminationSesersrasanarnss 22l
The Final ExaminationsS..scesserascacnns 2ad
Frogramming ASSignmentS.eerse s avensns Lo

Attitude Toward Computers and Computer
Frrogramming SUrveYeeas cvsnovasnranaasane £07

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TARLES

Table Page

1. Item Mean and Standard Deviation on the
Student Comparability Assessment for
COMPpArison leecewsveaensnensconanvnnunnsnunnnnna 700

2. Item Mean and Standard Deviation on the
Student Comparability Assessment for
Comparison Sueswnnnsssssenasnanennansnnasnssna 4

Z. Item Mean and Standard Deviation on the
Student Comparability Assessment for
COMPErison Seessancassensasnasvnnoananssnnnsans 78

4. Mean and Standard Deviation of Frogramming
Froficiency Peasuwres Used In Comparison l..... 92

5. Number of Students in Comparison 1
(A) Completing the Frogramming Assignment On
Time
() Completing the Programming Assignment
Late
{C) Not Completing the Programming Assignment. 96

&é. Mean and Standard Deviation of Programming
Ferseverance Measwes Used In Comparison l.... 97

7. Mean and Standard Deviation of Programming
Efficiency Feasures Used In Comparison l......100

8. Fretreatment and Fosttreatment Mean Item
Response on the Attitude Toward Computers and
Computer Programming Survey in Comparison 1...107

2. HMean and Standard Deviation of Pretreatment
and Posttreatment Student Total Response
Average on the Attitude Toward Computers
and Computer PFrogramming Survey in
COMPAriSOn lesesssncssseswnnnascansnsannansnssil?

10. Mean and Standard Deviation of Frogramming
Proficiency Measures Used in Comparison 2.....115

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table Page

1i. Number of Students in Comparison 2
{A) Completing the Frogramming Assignment On
Time
{R) Completing the Programming Assignments
Late
(C) Not Completing the Frogramming Assignment. 119

12, Mean and Standard Deviation of Programming
Ferseverance Measures Used In Comparison 2.... 1Z0

1%, Hean and Standard Deviatien of Programming
Efficiency Measures Used in Comparison Z2...... 123

14. Fretreatment and Fosttreatment MHean Item
Response on the Attitude Toward Computers and
Computer Frogramming Suwrvey in Comparison 2Z... 127

15. Mean and Standard Deviation of the Fretreatment
and Fosttreatment Student Total Response
Averrage on the Attitude Toward Computers
and Computer Programming Survey in
COMparison Cieessssnssnasvasncnsanannnssnanasss 128

14, HMean and Standard Deviation of Frogramming
FProficiency Measures Used in Comparison Z..... 134

17. Number of Students In Comparison 3
(Al Completing the Programming Assignments On
Time
{R) Completing the Programming Assignment
Late
(C) Not Completing the Programming Assignment. 137

18, lHean and Standard Deviation of Frogramming
Ferseverance Measures Used in Comparison 3.... 138

19, Hean and Standard Deviation of Frogramming
Efficiency lMeasures Used in Comparison J...... 141

20. Pretreatment and Fosttreatment PMean Item
Response on the Attitude Toward Computers and
Computer Frogramming Survey in Comparison Z... 144

21. HMean and Standard Deviaticn of Fretreatment
and Fosttreatment Student Total Response
Aver-age on the Attitude Toward Computers
and Computer Frogramming Survey in
CoMparison Siecesssssrnsonaassnnnsnonnssnnnsess 145

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table Fage

22, Mean and Standard Deviation of Student Grade
Received on Team FProject and Percentage of
Students Completing the Assignment..ccessconess 149

23, Student Selections From Word-Fair

Descriptions for Course Evaluation..ssasvaeses.s 154

kM
E.N

Age Distribution of Respondents (%)
Fall 1981..'......-..llllllllIll.llllllllll.l. laé

25. Racial/Ethnic Background
Fall 1981'.....III..lll.ll'l.llll..llll.l.llIl 18é

24. Entering Class Fost Important GoalS.esssewesses 187
27. How Respondents Learned About College..... s« 187

28. Respondents Choice of Major By HEGIS Taxonomy. 188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure

1.

LIST OF FIGURES

General attitude behavior-relation model...... 28

Time series analysis of the mean programming
assignment grades in the IND and FHG classes.. 93

Time series analysis of the mean writing time
per programming assignment in the
IND and FHE ClacseSesssnnscvaranavarasnwenanas 101

Time series analysis of the mean terminal time
per programming assignment in the IND
and FHE ClacseS. crsurseanuvnswnnnnanssanasnasaan LOZ

Time series analysis of the mean number of runs
per programming assignment in the IND and
F!“lG ClE\SSES.---.-..---....---.....--..------.- .I.‘:,:‘:

Pretreatment and posttreatment means of student
total response average on the Attitude Toward
Computers and Computer Frogramming Survey in

the IND and FHG Classe@Secunvrenuvsvosnnanvassa L1IO

Time series analysis of the mean programming
assignment grades in the IND and RHBG classes.. llé

Fretreatment and posttreatment means of student
total response average on the Attitude Toward
Computers and Computer Frogramming Swvey in

the IND and RHE Class@S.scovacscnssassannnssenas 129

Fretreatment and posttreatment means of student
total response average on the Attitude Toward
Computers and Computer Programming Suwvey in

the FHG and RHG ClascSESe s vsansnnrnenasanwnsnnas L4&

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAFTER 1

INTRODUCTION

Need

The area of computer science education, relatively
new to the school community, has now become the focus of
increased attention and research (Basili & Reiter, 1981;
Lemos, 1977). Lucas (1976) claims that as computer
literacy becomes necessary for the survival of the
individual in modern society, all students will need to
deal effectively with complex computer applications and
have the ability to balance the opportunities and dangers
presented in the use of computers.

Responding to this, undergraéuate and graduate
programs across the nation are requiring their students
to be familiar with, if not proficient in, computer
programming. Virtually all undergraduates at Dartmouth,
l]l undergraduates at Harvard (Fiske, 1980), and majors
in the fine arits, social sciences, physical sciences,
decision sciences, natural sciences, English,
engineering, mathematics, and business at many academic
institutions are being required to come in contact with
some aspect of computer science. The specific
requirements vary but the overall picture is clear: To

become a uvall-equipped graduate for today’s society, one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

must be computer literate {(Johnson, Anderson, Hansen., &
klassen, 192803 Thomas & Carroll, 1979). Consequently
computer faculties and facilities within the academic
institutions are fécing an increase in enrollment of
computer science majors and & need to offer
service-oriented computer science courses for other units
within the college.

Coupled with this, the decreasing ceollege population
has forced many schools to open and expand programs and
schedules to attract and accommodate the non-traditional
as well as the traditional student. As a resulty
computer science courses that in the 1960's were
available to and accepted by mathematics and science
majors only, are now being offered to the entire spectrum
of the college community. Thus, academic computer
facilities and faculties are being required to respond to
a growing audience of undergraduates, representing a wide
range of interests and levels of academic maturity and
ability, all while operating under the financial &nd
physical constraints of their institutions.

Especially sensitive to this predicament are the
introductory level programming courses that are service
courses as well as filtering agents for beginning
computer science majors. Cognitively, these courses are
designed to develop the student’s skill in writing
computer—-oriented solutions to varying types of problems;

and, affectively, they are directed to foster a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

"eonstructive and positive attitude toward the potential
of computers" (Sackman, 1970, p. 16). All undergraduate
introductory courses claim similar proficiency and
attitudinal objectives; however, courses in computer
programming additionally demand inordinate amounts of
departmental resources {(Lemos, 1977) and student time
(Liniversity of Nebraska Newletter, Note 1).

Farter and Nesa (1978), kKhailany (1977b), and Lemos
(1979b), among many other computer instructors, find that
beginning programming students spend time waiting for
computer terminals to be free. Often the programs the
students write don™t work and are full of errors (bugs),
requiring more time to search for errors {(debug?) and
correct errors {(edit) (Barnett, 1978; Conway, 1974;
Eckberg., 1976&; Rosenberg, 19763 Sebaugh, 19748). Thus,
normal demands of any introductory course are further
strrained by the investment the programming student,
especially the non—traditional student, who may have job
and/or family responsibilities, must make in terms of the
limited resource——time (Deimel % Pozefshky, 197%9;
Schribner. 1974).

Brooks (1275) states that the writing and running
and rewriting and rerunning of a program become a process
that causes tension, anxiety and frustration. "Cheating"
often becomes the fast, necessary solution, with students
copying someone else’s program that did work or having

someone else write theirs. This, together with the guilt

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the act and non-learning of the situation., is a poor
resolution at best {(Alford, Hsia & Fetrvy, 1277; Conway,
19745 Grier, 19813 Hathis, 19743 HMiller, 1981; Sackman,
1970) .

These circumstances have ramifications for the
instructors of introductory computer programming courses.
They find themselves having to esplain repeatedly simple
syntactical rules and point out common errors in logic to
their students and, in general, seeing frustration and
anxiety discourage more of their students than they can
encowrage (Ahmed & Rardos, 19763 Weinberg, 1971).

Considering the budgetary constraints, the faculty
arnd facility limitations and the student problems
accompanying the rapid eupansion of undergraduate
computer programming courses, investigation of
instructicnal methods that are effective and efficient in
producing students skilled in programming and with
positive attitudes toward computers is a primary concern
for research (Ahlgren. Sapega & Warner, 1978; Cheng,

19763 Gillett, 19743 HMartin & Docouis, 19&4).

Furpose

The purpose of this study is to investigate the
effects of the instructional methed employing student
programming groups on student achievement and attitude in

an introductory level computer programming course.

The group organization used in advanced programming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

computer courses claims to expose its members to the
mechanisms of a real-—-world situation by working toward a
cammon goal, adhering to deadlines and encountering
personality con#licts (Dinerstein, 1973; Freeman, 19763
Mackey % Foszdick, 19793 HMize, 197&4; Ferry & Weymouth,
1975 Flum & Weinberg, 192743 Ruschitzka, 19773 Tam %

. Busenberg, 1977). Educationally, however, professional
training, although important, cannot be accepted as
sufficient justification for use of this methed in lower
level courses. In such couwrses there is a diversity of
students that does not exist in advanced courses. Some
students may be taking the course as an introduction to a
major, while others may be fulfilling a requirement for
ancther major or taking the couwrse for
self-enlightenment. In these lower level computer
cowrses the use of group programming reguires
substantiation by cognitive gains and/or promotion of
paositive attitudes toward computers and computer
programming for all these students.

Major impetus to euplore the learning of computer
programming using group activities has come from
Weinherg’ s {(1971) advocacy of "egoless programming”
within programming assemblages. "Egeless programming”
occurs when the process of producing a program in an
individual, secretive mode is discouraged and the process
of producing a program in an open, shared manner is

encouraged (Lemos, 1979b). Supported and aided by the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

group in designing, coding and debugging. the individual
writes hisJsher program.

Weinberg, although mainly concerned with the
professional programmer in industry and not with the
amateuwr programmer in schools, states that the main
difference between the two is in the user of the final
product {(i.e.. the program) and that many of the
advantages of the process of programming within a group
are applicable to any learning situation.

The aim of the student programming group would be:
{a) to establish formally a routine of working together
in the analysis and design of sclutions to programming
assignments and (b)) to create and maintain a willingness
on the part of each member of the group to peruse & group
member’'s coded solution in edchange for receiving the
same from that member.- Students programming in the agroup
environment would still write programs individually; but
now they would have other programmers to whom they could
turn for help and who, at the same time, might be turning
to them.

To substaniate these claims this study investigates
the programming achievements and attitudes of the student
in the normal flow of informal student exchanges as they
compare to the achievements and attitudes of the student
operating within the formal structure of the group, where
such exchanges are not only encouraged but are demanded.

Two experimental instructional methods in computer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

science education, combining lecture with group
programming. are explored. One method employs fixed
heterogeneocus student programming groups and the other
enploys variant heterogeneous student programming groups.

The experiment is divided into three comparisons.
Camparisons 1 and 2 contrast the programming shkills and
attitudes of students receiving instruction in the
traditional mode, lectuwre and individual programming, to
those of students in each of the experimental
instructional sections, in which lecture is combined with
group programming. Comparison 3 contrasts the
programming skills and attitudes of students receiving
instruction in the two experimental methods: programming
within fixed heterogenecus student groups and programming
within changing heterogenecus student groups.

Specific questions to be investigated are:

1. Do students who receive instruction in the fixed
group or variant group or traditional setting achieve &
higher level of programming proficiency?

2« Does the individual operating within the fixed
programming group or the variant programming group or
programming alone exhibit greater programming
perseverance?

. Do students who work within the fixed group
structure or the variant group structure or alone make

more efficient use of their time (pertinent to the

couwrsel and computer facilities?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

4., Do students who program within the fixed group or
variant group or traditional environment exhibit & more
positive attitude toward computers and computer
programming?

Three sections of an undergraduate course in
introductory computer programming form the sample for the
experiment. All three sections are taught by the
investigator and cover the same material, from the same
text and lecture notes and at the same pace. The
students in one section are taught using the traditicnal
method of lecture and individual programming; the
students in the second section receive a similar lecture
but are directed to program within fixed hetercgenecus
groups: and the students in the third section receive a
similar lecture but are directed to program within
heterogeneous groups that are changed for every
programming assignment.

The ewxperiment begins with the third programming
assignment and includes the fourth, fifth and sixth
programming assignments and the individually taken
midterm and final examinations.

A swvey entitled Attitude Toward Computers and
Computer Frogramming {(see Appendix F) is taken by all
students at the beginning of the semester. At the end of
the experiment students retake the survey and are
encouraged to enumerate their general reactions to the

course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9
To aid in the interpretation of the data cbtained in
Comparisons 1, 2 and &, participation in a seventh
programming assignment, a team project, is reguired of

all the students in the study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

CHAFTER 11

REVIEW OF LITERATURE RELATED TO GROUF PROCESS AND
ATTITURE

Group Process

Definition

The casual assemblage of individuals to perform a
task does not necessarily define a functioning group in &
socio-psychological sense. Consider for example, the
failure of baseball plavers to act cohesively as a team
in the All-Star game (Weinberg, 1971) or the inability of
the members of the United Nations to act as a unified
force. It is the extent of cohesiveness in a group that
has major implications for communication and influences
decision—-making processes and other task performances
that characterize a well-functioning group.

A cohesive group can be defined as an efficient and
gffective group that is recognized by its members as
providing the means to accomplish goals more easily and
quickly than they could alone. In order for the group to
function successfully, each member of the group must be
an active participant and group members must work for a
common goal because they feel some direct personal gain
or satisfaction derived from the completion of the task
(Aleck, 19593 Bruce, 1959; Gates, 1948; Jewell & Reitz,

1981; Johnson, Johnson, Johnson & Anderson, 19763 Fiaget,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19713 Thiabut & Kelley, 1959).

However, if a group has one or more members who have
personal objectives which take precedente over group
objectives., the group te%ds to become non—functioning for
all members. Members of such collectives guard their
assets jealously and are not aware of the liabilities of
themselves to others. The group lacks the necessary
cohesion and the members become apathetic or indifferent.

This failure of one or more members to share the
group goals affects the group performance; not only
through that member’s share but through a reduced
performance on the part of others, who invariably
perceive the division within the group or the
indifference of one of the members. {(Weinherg,

1971, p. 72)

kelley and Thiabut {(1954) discuss an experiment
conducted by Gurnee in 1937 in which group process was
compared to individual process. GSome individuals worked
together as groups for tirials #2-#6 and made
significantly fewer errors than did the individuals
working alone. However on the seventh trial the group
members worked as individuals and made almost as many
errors as those who had been working individually
thiroughout the experiment. The conclusion was that:

Although groups perfarming a&s groups were more

accurate than individuals, grroup members showed no

evidence of superior learning in their subseguent

individual performances. (p. 122)

Gurnee attributed the correct decision promoted by

the group over the individuals as resulting from: (al

the scattering of individual uncorrelated errors

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

]2

cancelling each other out by the correct majority opinion
of the group and (b)) the individuals in the group being
subjected to social influences {(pressuwes) causing a
modification of their own solutions during the course of
group discussion. The rejection of incorrect ideas that
escape the notice of the individual when working alone
and the changing of opinion as a result of social
interaction in the direction of the consensus of the
grnué worked to produce the correct group solution.

In the analysis of individual decisions made within
a group as compared to individual decision-making, the
personalities of the group members are considered to play
a leading role in predisposing members to
self-confidence. It has been determined that
self—-confidence combined with the self-weighing process,
in which the individual®s contributions or suggestions
are withheld according to the degree of certainty that
the individual feels about them, greatly influence the
success of the individual within the group
problem—solving situation.

kelley and Thiabut state that with certain types of
tasks, among which they list the more complex
intellectual responses of problem—-solving (e.g., concept
formation, detecting relationships, analytic reasoning,.
etec.), the presence of others makes subjects more
cautious and constrained and responses are produced with

greater delay and are more commonplace in nature.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

This claim of the deieterious effect of social
factors is supported by the studies of Zajonc (1962) in
which "together" situations are réported to increase the
liklihood of the occurrences of responses most rehearsed
and decrease the liklihood of less practical ones. There
ie a rapid homogenization of viewpoint, usually led by a
knowledgeable member, overwhelming potentially valuable
contributions from minorities (Maier % Scolem, 1952) and
prehaps causing loss of motivation and alienation of
members.

Negative consequences of social interaction in group
problem-solving, also cited by Lamm and Trommsdorff
(1973), for example, presence of others not conducive to
verbalization of novel or creative ideas, fear of
criticism, distraction by ideas of others., presence of
dominant member, are not supported in a study done by
Fhilipsen, Mulac and Dietrich (1979).

The latter researchers examined the effect of social
interaction in small group problem-splving on idee
generatien by a group member. The investigation, using
four—-member groups, found no difference in a measure of
post—idea generation discussion after vocalization tasks
written by a real group (i.e., fixed formal group) and a
nominal group (i.e., Jjoining of four individuals”®
results).

Fhilipsen, Mulac and Dietrich agree that the

individual werking alone is not exposed to social

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

distractions, but report that the benefits derived from
cognitive stimulation by other group members far outweigh

the diversions that possibly exist in a group.

Use In Education

Employing group process in the classroom is not a
new or original idea. The educational psychologist, Bell

(1978h) states that:

Although expository teaching and teacher-centered
demonstrations are good strategies for introducing
facts, skills and concepts, they are not
particularly effective in promoting in-depth
learning of . . .« principles Students can
learn a great deal . . . from each other and can
identify their own areas of confusion by attempting
to explain skills concepts and principles to other
students. {(p. 205)

EBruner (1966&) offers further support for the
utilization of student groups in education and states

thats

Mental development depends upon systematic and
structured interactions between the learner and the
teachers; a student®s "teachers" are other students,
parents, school-teachers, or anyone who chooses to
instruct the learner. {p. &)

Fiaget (1973) criticizes the

traditional school that recognizes only the social
exchange that is connected with a teacher, who is a
kind of absolute ruler in control of moral and
intellectual truth over each individual student.

In such a school collaboration among the students
and even direct communication among them are . . .
excluded from classwork and homework because of the
examination atmosphere and grades to be met. (p.
108)

Continuing, Fiaget states that since collective

living has been shown to be essential to the full

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

development of the personality in all its facets——even
the more intellectual, an "active" school environment
should be established providing opportunities for the
students to alternate betwen individual work and working
in groups.

Accarding to both Bruner and Fiaget, the one thing
that many instructors tend not teo do is to exploit the
unique abilities which students have for teaching each
other. On many occasicons, students are better able to
learn concepts by discussing them with each other and
explaining them to each other than through exclusive
instruction from the teacher (Bell, 1978a; Mckuen %
Davidson, 1975).

Agreeing with Piaget and Bruner, Brown (1975)
defines education to be essentially a social process that
pcouwrs continually as a resuwlt of interaction with other
human beings. Although a student may learn by doing
something alone, the meaning of what is being done is
realized only through the student®s interaction with
cther people (Mckuen % Davidson, 19753 Stanford % Roarlk,
1974,

Bruner labels this interaction between the student
and others as "reciprocity" and links it te the student’s
will to learn.

Finally, a word about one last intrinsic motive
that bears closely upon the will to learn. Perhaps
it should be called treciprocity, for it invelves a
deep human need to respond to others and to operate
jointly with them toward an objective It is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

about as primitive an aspect of human behavior as we
know . . « « Its exercise seems to be its sole
response through reciprocity to other members of
one's species. Where joint action is needed, where
reciprocity is required for the group to attain an
objective, then there seem to be processes that
carry the individual along intoc learning, sweep him
into a competence that is reqguired in the setting of
the group. We know precious little about this
primitive motive to reciprocate, but what we do know
is that it can furnish & driving force to learn as
well, (p. 125)

Small Group Problem—8olving In The Classroom

In support of small group learning in the classroom,

Johnson and Johnson {(1979) conducted an experiment -in an
elementary science class. Forced by a lack of supplies,
the use of group interaction in science classrooms has
long been the accepted pedagogical approach. Although
the experimenters state the intention to form
heterogeneous groups, in which students would have
different backgrounds, perspectives and skills for "the
most powerful problem—-selving situation”" (p. 27), random
methods were used to form fouwr-member groups.

The results of the study indicate that cooperative
learning caused students to share information, generate
alternative ideas, invent tests to try out each other’s
ideas and sharpen their inference through discussion.
Besides finding an increase in cognitive learning, the
benefits reported by group interaction were student
self-esteem and a more positive attitude toward science.

One specific advantage for the instructor

(concurring with findings by Davidson, 1974) was the time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

that was saved from having to repeat directions, as
someone in each group will have listened enough to know
what to do.

Davidson, Agreen and Davis (1978) employed the small
group discovery method in & junior high mathematics
class. Hoping that incompatiable personality
combinations would be avoided (see studies done by
Hoffman, 1979), students were permitted to form their own
groups. This method resulted in forming a few
hémogeneaus groups and, <hough they may allow the
slower or faster learner to move along at his or her own
pace, "groups consisting solely of very slow learners are
a disaster more often than not" (p. 25).

Davidson, Agreen and Davis found that the classroom
atmosphere became trelawed and informal when help was
readily available. Guestions were freely asked and
answered, and even the shy student found it easy to be
involved. The teacher—-student relationship tended to be
more relaved and pleasant than in a traditional approach.
In addition students were able to maintain & high level
of interest in the small group activities. Bome slow
learners liked math more, or at least hated it less, than
in teacher—directed approaches.

The disadvantages reported basically concerned the
difficulty involved in forming effective working groups,
covering the material (contradicting findings of

Goeldberg, Note 2) and persistant absenteeism. Those

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

students who frequently missed work were not supported by
the other group members who were reluctant to take the
time to help the absentee. This contradicts the results
of Davidson (1974) who states that when using the group
situation to learn mathematics, the group was an
invaluable aid in helping returning students "catch up"
on the work they had missed while absent.

Seeking a change from passive learning situations
accompanied by too much time spent answering trivial
gquestions and having extroverted students dominate class
discussions and overwhelm introverted students who had
unasked questions, Artzt (1979) formed teams in a
secondary level mathematics class.

Artzt used this method in five, S0 minute classes a
day for two years. Students divided themselves into
teams of fouwr, five or six members that would change at
the completion of a given unit of work. The class would
have five to seven teams and each handed in one copy of
the previouws night’s homework, corrected by the group and
designated as the team™s homework, besides submitting
individual homework assignments for comment, correction
arnd grades.

The instructor attempted to foster group interaction
by penalizing teams for incorrect statements in team
homeworlk, missing homework from team members, late
arriving team members, receiving the lowest team average

on a quiz and any disciplinary action necessitated by &

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

team member.
Artzt found the first grouping to be of friends but
after the first assignment, weaker groups demanded

equalization.

The desire to create teams of equal strength forced

teams to find members of different abilities; such

balancing was to everybody's advantage. (p. 507)

Since the class consisted of the better students
{i.e., those students who were on the Regents track), the
differences between the students was not wide, and so it
was not considered a burden for them to help each other.
During the eighteenth weelk of the year the teams had
stabilized to evervone’s satisfaction.

It was determined that the students were getting
better grades in mathematics and the classes were scoring
higher on the Regents exam than other classes and than
the instructor’s own classes in previous years.

Anpther result reported by the experimenter was an
improved attitude toward math in slower students. How
the attitude improvement was assessed is not explained
nor does Artzt comment on the increase in paper werk for
the instructor or on the reaction of students to becoming
morally responsible for their team members® actions.

Alspo experimenting with students in secondary
education, Garibaldi (1979) conducted a small-scale
investigation to assess the affective benefits of using
cooperative and group goal structures on two

problem-solving tasks. Working with 22 high scheel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

20

students randomly assigned to one of fouw experimental
conditions (two-person pure cooperation, two-person group
with intergroup competition, individualization,
two~person interpersonal competition), Garibaldi found
that students who worked in group-cooperation and
intergroup competition performed best, exnpressed greater
certainty about their answers and demonstrated more
enjoyment of tasks than students who worked alone
(interpersonal competition or individualization).

Employing a Likert-type questionnaire, Garibaldi®s
results support those found by Johnson and Johnson (1979)
and Goldberg (Note 2) that students who cooperate perform
better, have a more favorable attitudé toward peers and
tasks and indicate a higher degree of commitment to their
answers than do students who compete or work
individually.

In addition; Garibaldi concluded that individual
competition appeared to be "ineffective in performance
impraovement for low achievers" (p. 794); while low
ability students who worbked with high ability partners

improved in performance (number of correct answers)

-

significantly.

Similar results are to be found in the studies done
by Goldman (1965) in which undergraduate students of
different abilities worked in paired groups on problems
in the Wonderlic Intelligence Test. The partner paired

with the student above his level was reported to have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

improved significantly over the individual who was paired
with & partner at or below his level.

Garibaldi does not consider the problem of the more
knowl edgeable group member dominating the group answer,
thereby necessitating the learning of the low-ability
student to be assessed by other means.

Research using problem—solving cooperative groups
for mathematics instruction on the undergraduate level
was done by Goldherg (Note 2). Heterogeneous teams of
fouwr or five abstract algebra students were formed.

These groups worked on assignments together in class and
outside. They could divide each assignment into sections
and have each member of the group do one section or they
could elect to work on the entire solution together.
Either way they were required teo discuss, edit and submit
a single written sclution to the instructor.

Goldberg found that:

The grades for the semester determined in this

fashion were higher than theose usually given to

students taking the same class with me. The group
assignment scores were generally better than those
of individuals, but so were the midterm and final
scores and these were obtained individually. Rather
than wasting lecture time for group discussions (as
most instructors fear will happen in innovative
teaching), the subject matter covered in the course
was the most extensive in my experience. (p. =)

A departmental evaluation questionnaire elicited
positive reactions from students toward the group study

method. Students felt they were better able to "digest®

the material in the pleasant socially-oriented

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

environment but were burdened by the time requirement for
group meetings outside of the classroom.

Cooperative problem—solving is viewed by Lightner
(1981) as the exposing of the individuals in the group
milieu to aspects of a problem situation which may or may
not have had the sane weight or imprint te them in an
izolated and individualized milieu.

A clarification process accurs for the group
participant when he/she is forced, by interaction, to
recite the problem—solving steps which will lead to a
plausible solution and when the alternative solutions of
group members point out the relevances and irrelevances
of the probklemn.

This distillation process, while peossibly leading to

the same solution as some participants might

conceive ocut of isclation or individual study, does
have a distinct learning advantage of systematizing
the problem-solving approach. It gives each group
member a more intuitive wunderstanding of the issues
and forces which bear upon the solution of the

problem. (p. S.)

Lightner claims that this understanding can be translated
into a more rapid achievement of knowledge and subject
matter.

To substaniate thecse benefits of group dynamics,
Lightner conducted a comparative experiment in
intermediate undergraduate accounting cowses using
traditional lecture format in Fall 1977 and group

problem—solving in the Spring 1278. The experimenter

evpected that the group milieuw would change students”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

passive learning attitudes and foster sharing and
put-of-classroom discussions that would improve the
students” comprehension of the subject matter while
reflecting the professional real world role expected of
the accounting major.

The same fouwr examinations were administered to both
the Fall and Spring classes, but to encourage group
interaction, Lightner offered the students in the
experimental classes an additional maximum of five points
from the examination grades of their.group members.

These additional points for group effort were obtained by
finding 8% of the average of the team examination scores.
In this manner it was possible for a team member to
achieve a score of 1053 on the examinations.

Testing for homogenity in the group and non-grouped
classes, Lightner found no signifigant differences in the
averages of their previous accounting grades, yet her
results showed a marked difference in learning {(i.e., a
higher mean examination score between the twol.

Lightner agrees with Garibaldi that the'
"heneficiaries of the group process learning appear to be
the acsdemically poorer students" (p. B8). Examining the
range of final exam scores which were two standard
deviations from the mean, demonstrated that the
performances of the weaker students in the groups
markedly increased over those in the non-—grouped

situation. This contradicts the results of a study

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

conducted by McLecod and Adams (197%), in which =slow
=students had trouble keeping up with the pace set by
their group and there were students who fell behind teo
far to profit from group discussion.

The better students in Lightner®s study were
motivated to help the weaker students because points on
part of their exam grades depended on their performances,
vet results found that hetter students performed well
under either group or non—group settings.

Lightner lists the additional time commitments
required as group members and the exristence of divergent
study habits as possible problem areas when employing
group process in the classroom, but states that the
improved academic performance of poorer students, and the
creation of more cooperation and interest needed for
professional accounting activities form a strong case for
the implementation of participatory group dynamics in
accounting education.

Qimilar results are teo be found in a recent study by
Fing (1978) in nursing education. King's course,
incorporating Gestalt therapy, confluent education and
group process was based on Brown®s (1975) statement that
although a student may learn by doing something alone,
the meaning of the task is realized only through
interaction with other people.

To humanize the approach of nwsing students to

diabetic cases, the students were randemly divided inte

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

25

five-person groups te discuss patient diet and
medication, personal reactions and, in general, to give
support to each other. Student responses initially were
mived, but as the term progressed the students became
more involved with each other’s work., Ideas were
exchanged and feelings were shared. At the end of the
course the responses were positive.

Although no differences were noted in student
performances, Fing reports that the

substanial interaction in the task groups . . .

provided a much finer supply of information than

that which emerged from the larger group, where only

two or three students could present their
information and the rest passively listen. (p. 24)

Attitudes

Attitudes and Behavipr

Attitude, being a hypothetical construct, defies a
zingle, final definition (Scott, 1948; Shaw & Wright,
1947). Allport (193%) defines attitude as a mental and
reuwal state of readiness, organized through experience
and exerting a directive or dynamic influence upeon the
individual " responses to all objects and situations to
which it is related.

Disagreeing with Allport, Bain (1728) and Horowitz
and Horowitz (1938) view attitudes as essentially the
response rather than a set to respond. Studies by Sherif

and Sherif (19468) find attitudes to be collections of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

responses and define attitude, operationally, as the

individual®*s set of categories for evaluating a

stimulus domain in interaction with other persons

and which relate the individual teo various subsets
within the domain with varving degrees of positive

or negative effect. (p. 115)

Attitude, defined in the above manner, can then be
inferred from the consistent characteristic behavior of
the individual. However, attitudes may alsc be viewed in
causal relationships. Znaniecki (1939) attempts to make
a distinction between attitudes, opinions and knhowledge
and define attitude to be a preocess of individual
consciousness which determines real or possible
activities of the individual in the social world.
Further distinctions are made by Hartley (1948), who
finds it difficult to disengage attitude from other
processes that serve similar functions and states that
the study of attitudes must "involve the unde?standing of
emotions and motivations" (p. 92).

The study nf attitudes occupies a central place in
all social-psychological research. Ne theory of sccial
behavior can be complete without incorporation of
attitude functioning and it is doubtful that "complex
social behavior can be predicted without knowledge of
attitudes" (Shaw % Wright, 1967, p. 14). Whether the
definition of attitude is focused on the potential to
respond or on the response itself, attitudes are linked
to the behavior of the individual.

In the studies done by Fishein and Ajzen (1974,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1975), attitudes and subjective norms assume a central
position in the etiolegy of behavior by means of their
influences on intentions, and not by their direct impact
on behavior.

The subjective norm, which is a measure of the
influence of the sccial environment on an individual®s
hehavior, corresponds to the individual’s beliefs
regarding whether those referents, who are important to
him or to her. think that he or she should perform a
given behavior.

Bentler and Speckart (1979) eupand on this theory
and offer a generalized attitude behavior-relations model
{zee Figure 1) in which attitude is proposed to have a
direct influence on behavior in addition to an "indirect
influence on behavior by means of cognition—conation

intentions” (p. 455).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

previous

behavior T

behavior

attitudes intentions

T e
subjective ,;:

norm

o

Figure 1, A generalized attitude
behavior-relation model,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

Zimbardo and Ebbesen (1970) view attitudes as
enduwring predispositons, ones which are learned rather
than innate. Thus even though attitudes are not
mamentarily transcient, they are susceptible to change.
Consequently, directing a change of the underlying
attitude should produce more enduring changes in behavior
than would be produced by trying teo change directly only

the behavior in question.

Attitude Change and Groups

| Zimbardo and Ebbesen (1970) state that since
attitudes are susceptible to change, 'all the technigues
relevant to learning any material should be relevant to
learning and changing attitudes. BRasically, methods of
attitude change rely upon the assumption that change
comes out of conflict, discrepancy, inconsistency or
discontent with the status quo.

Usually when the researcher (instructor) wishes to
change an attitude in a favorable direction, an attempt
is made to bring about acceptance of the proposition that
the attitude object possesses positively valued
attributes (Hovland, Janis, % Kelley, 19573; kiesler,
Collins & Miller, 1969). Within the group milieu this
cccurs when the group becomes a sowrce of
need—-satisfacion for the individual student. Ry
identifying with the group, the individual student member

obtains rewards (i.e.., decrease in frustration and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

anxiety, decrease in time wasted, increase in success in
Funning a program) which lead to need-satisfaction, and
those rewards are recognized by the individual as being
obtainabhle only by acquiring the attitudes of the group.
This metheod of attitude manipulation may have more

success than

a direct attack on the nondesirable evaluation
that would bhe effective only to the extent that
asspciated concepts are changed or that the
evaluation reflected by existing . « . concepts is
altered. (Shaw & Wright, p. 132).

fccording to kKelman (1938), there are three theories
of attitude change within a group environment:

1. Compliance. This occurs when the individual
adopts induced behaviar te produce a favorable reaction
firoem the group (i.e., to receive rewards, approval; to
avoid punishment, disapproval).

2. Identification. This occcurs when the individual
accepts group influences for behavior in & desire to
eztablish or maintain a satisfying relationship to the
gIroup.

3. Internpaliczation. This cccuwrs when the individual
accepts group influences {(the ideas and actions of which
they are composed) because they are intrinsically
rewarding.

Felman labele the first two types of attitude
changing of the individual in the group as social

adjustment. However the success of any group technigue

to manipulate attitudes of persons is contingent upon the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

person wanting to belong to the group and perceiving self

as being a member of the group.

Attitudes and Learning In Groups

Assessment of student attitude toward a classroom
subject has new—-found importance as attitudes are being
linked to success in learning.

The development of positive attitudes toward a

subject assists the student both in mastering the

cognitive aspects of the course materials and in
pursuing application and further study of the

materials after a course has ended. {Fletcher,
1958, p. 861)

Stanford and Roark (1974) report that groups have
not been the rule in traditional schooling practices
because of the concept of the

teacher as an information dispenser and students as

information receptacles. This apprroach has alse

been commonly emphasizing individual
accomplishments, and de-emphasizing cooperative
endeavors. The result has been a highly competitive
system which emphasizes individual rather than group
attainment. (p. S48)

Carl Weinberg (1944) states that in the traditional
classroom learning stituation, competitiveness tends to
hamper the learning process by promoting & spirit of
indifference and resentment in students. The emotional
effects of competition raise the general level of anxiety
and interfere with problem—solving abilities.

The detrimental effect of competition is supported
in studies by Exline (1963) in which gnal achievement,

problem—-solving ability, aggressive behavior and

interpersonal communications, all of which are relevant

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

to learning., were affected.

Since attitudes have been shown to have an
affiliative dimension, guiding the formation of
interpersonal ties deriving from group membership,
examining attitudes of students specific to their group
involvement presents a new concern for the educator who
employs cooperative processes, rather than competitive
aones, for classroom learning.

Johnson and Johnson (1978) state there is consistent
evidence from preschoel to graduate settings that when
cooperative learning groups are emphasized, more positive
attitudes are promoted toward subject area and
instructional experiences.

fne of the major influences on attitudes toward
learning reported by the studies conducted by Gunderson
and Johnson (1980) is the relationships students develop
with peers.

Within the group. studentes receive support for the

perception that they can be successful if they try

to achieve and so successful cooperative learning
groups those in which supportive and caring peer
relationships develop have been determined to
result in higher achievement and more posiitive

attitudes toward subject areas. ip. 43

Agreeing with these findings, Schmuck‘and Schmuck
(1971) report that a student®s perception of helding low
status (more than the fact of actually having such
status) is related to incomplete use of intellectual

abilities and to possessing negative attitudes toward the

selft and toward the school.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

33

An evperiment in eliminating all major competitive
aspects in a graduate management science classroom was
canducted by Goodman and Crouch (1978). Relative
performance played no part in the grading scheme and
cooperation in the learning experience was rewarded in
terms of grades. To establish a cooperative learning
experience groups of fouwr were organized in which the
students were directed to teach and learn from each
other.

A portion of the grade was allocated to peer
evaluation and self-evaluation in respect to the
student’s own assessment of hissher contribution te
cthers® learning.

The investigators noted that student behavior
changed gradually and "more and more cooperative learning
became evident" (p. 133). The top students were still
identifiable but in this cooperative environment, they
spent considerable time helping others. "In this manner
they were able to raise their own grades and also clarify
their own knowledge" (p. 133).

Student comments, in general, indicated that the
cooperative learning environment had made the learning
experience more profitable {i.e., they had learned more)
and more "enjovable." Goodman and Crouch concluded that
the non—competitive aspects of the course were found to
have a greater impact on the enjoyment of learning than

on the amount learned., This suggests that the course

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

structure was "successful" in reducing the anxiety
piroduced in similar environments with traditional class
structure.

Sharan (1980) compares and evaluates experimental
studies employing cocoperative small—group learning in the
classroom in terms of their differential effects on
academic achievement and student attitudes. The first
method presented is the "jigsaw classrcom" used by
Aronson (1978) in which the material to be learned was
divided into as many parts as there wetre members in the
group. Each member was responsible for a part and for
teaching his/her part to the other group members.
Increased self-esteem, choosing to help rather than outde
classmates, was noted by the investigator.

In another study discussed by Sharcon. "jigsaw"
groups are employed by Geffner (1978). It was found that
students maintained positive attitudes toward themselves
in terms of their academic abilities and general
el f-psteemn, toward school and toweard their classmetes.
However a decline in attitude toward themselves and
toward classmates was noted in students in the control
classes, which were taught in the traditional manner.

Replacing interpersonal competition in classrooms

with between—group competition, De Vries and Edward (Note

Zr performed an experiment using
"teams~games—~tournaments” (TGT) and Slavin (1978)

conducted a study employing "student teams and academic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

35

divisions" {(STAD). Utilizing peer-tutoring, the
heterogeneous groups appeared, in both studies, to arouse
student motivation, but neither study could substaniate
any promotion of achievement by the peer—-tutoring aspect.
However, more positive attitudes toward specific subject
matter being studied and greater satisfaction were neted.

The next two approaches presented by Sharan emploved
the group—investigative appreach rather than the
peer—tutoring method. Results of an esxperiment conducted
by Sharan and Lazarowitz (Note 4) confirmed the
hypothesis that students in small-group classrooms
succeed on more high level questions and questions
"frequiring original elaboration of one’s responses than
did their peers from traditional classes" (p. 251).

Johnson and Johnson (19789) alse used the cooperative
learning approach in small investigative groups and
report that measuwres of the social-affective domain
showed that students from experimental classrooms were
more cooperative and altruistic and much less competitive
and selfish., Furthermore, the Johnsons ascertained that
students” cooperative behaviar skills transferred to
their interaction with peers, not members of same
learning team, and to their hehavior in social situations
not structured by the teacher.

Besides reporting superior academic achievement, the
Johnsons® results from the cooperative learning method

confirm repeatedly that cooperative learning promotes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interpersonal liking, attraction, trust, sense of being
accepted by teachers and peers and more positive
attitudes toward schoecl and toward the learning situation
than does either competitive or individualistic
instruction. Students claimed that by participating in
cooperative teams “"they believed they were learning

Eetter in school than did students who studied

DR}

individually" (p. 283).

In addition to the affective results reported by all
methods of small group learning, Sharan states that the
helping behavior structured and stimulated by the group
investigative methods tends to promote a high level of
cognitive functioning and the

inter—personal exchange within the group appears to

foster the emergence of superior problem-solving

strategies faor all participants regardless of

ability level. (p. 256)

The classroom studies of Davidson, Agreen and Davis
(1978), Artzt (1979), Goldberg (Note 2), King (1978),
Shelly and Cashman {(1977), Lemeos (1978), Davidson (1974),
Mckuen and Davidson (1975 inveolving group process, cited
in thie chapter and in the following chapter, list
pogitive attitudinal changes in the students toward
subject and learning. Moreover, several of these studies

found those results to be accompanied by increases in

student cognitive achievement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

CHAFPTER I11I

REVIEW OF LITERATURE RELATED TO INSTRUCTIONAL METHODS IN
COMPUTER SCIENCE EDUCATION

Methods Of Instruction Not Employing Group Programming

Students study computer science for many different
reasons. Some expect to earn a living by working in some
phase of computing. Some want to broaden their
perspective by learning something about computers.

Others have been brought inte the intreoductory computer
science class as partial fulfillment of their major’s
requirements.

Often all these students are placed intc the came
introductory couwrse (Friedman & koffman, 1977; Lemos,
1978) creating problems of how to teach te such a wide
selection of students and how to censtruct a cwriculum
to appeal to such a diversity of backgrounds, needs,
motivations and abilities (Singhania, 1980).

The traditional instructional method, dictated by
student enrollment and ceollege resources, and widely
employed in introductory computer programming language
learning courses, is the lecture.

Numerous theories and methods have been developed
for improving educational efforts in computer
science classes, but unfortunately, many instructors
justify the use of standard lectures on the basis
that it is all that is available when in fact, it is

only all they want to make available. (Eor-n, Note
Sy pe 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the lecture method, students are required to sit
passively as the instructor presents theories, facts and
constructs, demonstrates their use and leads the students
in applications or designs implementing the new theories,
facts and constructs. Some lecture courses permit
spontaneous questioning by students at any point during
the lecture: others, because of large attendance, have a
guestion period after the presentation of the material or
refer students to teaching assistants at the conclusion
of the presentation. These methods have caused
displeaswre at all levels: among administrators,
instructors, teaching assistants, and especially
students.

Buestioning whether the traditional lecture is a
particularly effective or economical way of teaching
pragramming, Conway (1974) produced the equivalence of
lectures on tape. Students were able to use the tapes on
cassettes accompanied by 35 mm slides. The initial
préparation of each tape reguired a "tremendous amount of
wark" (p. 8)3; however, the completed tapes were
non—consumable.

Noting little change in student performance, Conway
concluded that the project was essentially a failuwre
because the system was not "portable" and the students.
although able to reuse thelgapes as often as desired,

found the process of searching out particular areas of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

misunderstanding to be difficult and slow. In.an attempt
to correct this complaint, a set of notes was produced
that covered all aspects of programming in addition to
the rules of syntax.

Conway now views the tape and slide units as
essentially remedial and offers beginning computer
programming students a two-lecture per week course with
optional graduate teaching assistant meetings every
afternoon.

Combining the lecture with a laboratory session was
alsc the method used by Unger {(1976) and by Prather and
Schlesinger (1978) in response to the dissatisfaction
enpressed by many students and educators with the results
of conventional teaching methods.

This solution offered large lectures (250-300
students) with small laboratory sections ¥20—40 students)
which related lecture material to specific disciplines.
Both experiments report that a large amount of
coordination was neesded between lecturers and the
graduate teaching assistants in the various laboratory
sections in order for the program to function
efficiently.

No cognitive or effective results were offered by
Linger or by Frather and Schlesinger but student reaction
was determined to be favorable except for a common
complaint about the tremendous amount of work required.

Frather and Schlesinger concluded that the students

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

40

seemed better prepared for later courses but the
experimenters do not describe how this was determined.

In an attempt to reduce faculty use, Eccles and
Gordon (1974) created video tapes of TV lectures that
were coordinated with a text in presenting a
nonself-paced PL/I (Programming Language 1) cowse to
beginning programming students.

This method enabled the educational facility to
overcome the lack of computer faculty on regional
campuses by permitting students to talk with an
instructor, who was present at each showing, via a
"talkback system." These students, off the main campus,
spontanecusly formed small groups in which they helped
each other while vying for grades.

The main problems cccurred with those students who
couldn™t tolerate a television approach, became inhibited
by using the talkback system or needed more help, but
were extremely passive.

No statistics were presented to determine if
students did better using this treatment as compared to
the "live" classroom, but Eccles and Gordon found the
results were acceptable and that the students were
exposed to an excellent educational experience.

Stating that students seem to learn less in a
traditional lecture setting than may be expected, Daly,
Embley and Nagy (1979), designed a "lectureless”

environment for 100 business students to familiarize them

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with FORTRAN.

In this comparative study, the students in courses
with eliminated lectures were given & detasiled
"programmed" text editor, SIMFLE, that helped them
interact with the computer. SIMFLE was a line-oriented
text editor with 15 commands and a simple file structure
that was independent of hardware and operating systems.

Users were able to create, modify, execute files,
and communicate with instructors and each other via
files., GSIMFLE was designed to overcome the shortcomings
of other general-purpose editors: too many commands,
ambigious error messages, absence of a HELF feature.
Since this course was not self-paced, student progress
was determined weekly by ten minute oral quizzes. The
instructors found that in addition to initial
apprehension and troublesome start-up conditions,
teaching load was higher because of the individual oral
testing. The solution to that problem was teo have the
testing procedure delegated to the teaching assistants.

Overall results demonstrate that in the treatment
described as "lectuwreless," students learned as much, if
not more, than students in traditional lecture classes.
The measure was based on midterm and final examination
scores. The "lectureless” students were exposed to more
worked out examples and talked more often with members of
the class, teaching assistants and instructors than

students in the control (lectuwe) sections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

42

Resides this, the experimental program offered
flexibility in applications and in specifying assignments
and could be given with uniformity of instruction,
alleviating the need for highly skilled lecturers.

The completion rate of those in the experimental
classes appeared to be comparable to conventional
(lecture) courses and most students responded favorably
when informally asked if they liked the lectureless
method.

Another recent approach to introductory computer
pirogramming study employs the computer as a teacher.,
providing a one-on—-one tutorial enviroment. Freviously,
this method, Computer Assisted Instruction (CAI), was
deemed unsuccessful in teaching programming because
compilers were unable to provide comments on students
problem-solving techniques and merely listed the
syntactical errors found by a diagnostic system.

PLATO IV CAI., an automatic instructional system
exposes introductory students to structured programming
concepts and top-down problem sclution techniquesl by

means of examples. Students develop on-line, interactive

lTop—-down design is a disciplined approach to
organizing complexity. It is similar to writing an
outline for a term paper in which the main topic is
bireken down into a hierarchy of subtopics. These are
further broken down until the writer achieves an
understandable, controllable amount of complexity. From
this level the writer builds, in a step-by-step manner,
the scolution to the original problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dialogue with the tutor {(the computer) and the tutor
provides hints and comments on structure and efficiency.

Al though this is an attractive idea, "intutitively
the number of possible solutions must increase enormously
as the complexity of the problem increases" (Danielson %
Nievergelt, 1973, p. S3) and achieve compl._.xity beyond
the sophistication of the system to analyze all the
acceptable seolution programs.

In another attempt to maximize learning utilizing
the computer as the teacher, Gillett (1974) emplovyed the
Interactive Program Advising System (IPAS) for beginning
programming students. The system aimed at increasing
program readability {(e.g., by replacing A=Z¥R by A=R+R)
rather than efficiency.

IFAS, unlike & teaching assistant or consultant, did
not improve on the student’s approach to programming but
merely commented on the code the student wrote. However,
also unlike a teaching assistant or consultant, IPAS was
not able to comment on program logic.

The proponents of this approach to computer
education feel a CAIl course is at least as effective as
the traditional method and although demanding "an
enormous time requirement inpitially of the instructor"
(Sjoerdsman, 1976, p. 16), it often reduces the time
required by students to master the material.
Additionally, this method makes the course flexible and

thereby available to many who would not otherwise be able

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

to enroll.

Employing such a method, Aiken (1981) found an
increase in student enrcllment and a reduction in staff
required to teach a computer course. Aiken states that
CAI makes repeated teaching of introductory level couwrses
more tolerable for instructors and more effective for
students. Although some students found the method
impersonal and even dehumanizing, complaining of eve
strain when using the terminal, others liked the constant
friendly temperament of FLATO, which kept their mistakes
private and was able to repeat lessons without
embart-assment.

Aiken admits that the machine "is never as flexible
ar as responsive as the best human instructor”" (p. 82}
but recognizes that learning one-on—cone from a highly
skilled human tutor is not a viable alternative.

Another appreoach employed in introductory computer
cowses is one in which the students move at their own
speed through the course. Linder (1976) developed an
interactive self-paced competency-based course in
elementary FORTRAN., Students reacted enthusiastically to
the computer-tutor and Linder found this to be an
effective method of overcoming the difficulty presented
by having to teach students of varying backgrounds.

Ettinger., Goodman and Flumm (1981) developed a
combined self-paced, mastery-based FORTRAN couwrse to

provide more consistent and predictable learning cutcomes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

for introductory level courses. It was designed to
improve faculty and student satisfaction and was able to
decreasevthe number of redundant FORTRAN courses offered
for non-majors and thereby reduce the number of faculty
needed to meet the stated needs of the various
institutional disciplines.

A constant, insuwrmountable problem encountered by
the method designers was the inability of students to
progress due to a lack of adequate strategies for
debugging and testing of programs. Ettinger, Goodman and
Flum concluded that:

Just as the traditional lecture-oriented class does

not meet the needs of all the students, self-paced,

"self-instructional courses are not to evervone's

liking. (p. 72)

A recent pedagogical method was devised by Uersham
{1981) in which students were able to chase & of 1G
madules in lecture and language to form a8 course in
introductory computer science.

This multipath approach, although difficult to
manage and complicating the prerequisite requirements for
upper level couwrses, offered flexibility in use of
taculty from other departments, individualization for
students of varving abilities, edperiences and interests
and significant improvement of the standard course
offered in previocus semesters.

The average student®s performance improved and the

attitude of student and faculty toward the course became

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

more positive. Dersham views this model approach as the
vehicle for presenting introductory computer science
cowrses in small colleges.

Although computer science educators are emploving
many innovative methods in introductory computer
programming learning couwrses, taped lectures, TV
lectures, slide presentations, lecture-labs, lectuwres
with on—-line screen display (Cheng, 19741, lectureless,
el f~paced, CAl--interactive tutorials (Tsai & Fohl,
19771, masterpiece program readings (Kimura, 1979,
varying lecture and langusge module combinations, none
appear to document substaentially the consistent

improvement of the student, cognitively or affectively.

The Group Frogramming Instructionsl Method

The recommendations of the Committee of
Undergraduate Curriculum in Computer Science, the
consensus of a large number of educaticn and industry
professionals, are that:

Students should be able to read and evaluate

programs written by others as well as experience

evaluation of their own work and that students
should have practice in working alone and also in
being part of a programming team and be reqguired to
present oral euplanation of their particular

routine. {(Little, 1977, p. 13)

In recagnizing the benefits that can be gained from
these activities, the committee overtly supports the

instructional methed employing "egoless" programming

within group. Support for "egeless" programming within

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

the group for the professional as well as for the
student, is te be found in Weinberg's {(1971) The

Feyvechology of Computer Programming. Weinberg states that

success in programming has less to do with intelligence
tham with personality, work habits and training.

These things, unlike intelligence, can he
changed hy euperience later in life, which turns the
problem from one of selecting programmers to
creating them., In other words, good programmers are
made, not born. Therefore we should turn our

attention to the manufactwring process, or training
process. {p. 1762

Research .psychologist Sackman {19700, studying
patterns of behavior in problem—seolving with a computer,
agrees with Weinberg that in the end, for programming,
evperience and training come to dominate all other
variables in programming success.

According to Weinberg, placing computer students in
programming groups controls their environment, structures
their training, dictates their experiences and zscts as a

pedagogical attempt to achieve such success.

Benefits of Emploving Group Frogramming in Introductory
Classes

Weinberg claims there are three main aspects of the
process of programming within a group that are designated
to benefit the computer science student as well as the
professional: helping and/or soliciting help from other
members of the group, readiné and critiquing other

members’® programs, and debugging programs witten by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

48

group members.

1. Helping or seliciting help from other students in
the class is often considered "cheating" (Bezanson,
1975). Working within a group this exchange of
information and assistance is encowaged and expected.

It combats somewhat the familiar disadvantage of
timesharing, in which the students frequently rely too
heavily on the computer to find their errors and do not
plan ahead carefully {(Jehn, Rine & Sondak, 19783
Singhania, 1980).

Weinberg states that when the group members offer
and request aid in problem solution and program design
and code, the level of programming competency of the
group, &8s a whole, should be raised.

2. Reading and critiguing other members®™ program
selutions for style and clarity, the students see a wide
range of work with which teo compare theirs (Alford, Hsai,
@ FPerry, 19773 Cashman & Mein, 1975; Conway, 1974;
Freeman, 197&; Gries, 19743 Irby, 19773 bhailany, 1977&).
Within Weinberg’s "egoless" programming teams, members'
are required to read each other®s programs. This removes
the guilt felt by studenits when they read classmates’
pragrams swreptitiously {(Lemos, 1978). As they are
reading the programs written by others, students pass
knowledge about style, language, algorithms, and design
to each other (Mackey % Fosdick, 1979).

At the same time as one is reading a group member’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

pirogram, ane is required also to critique it for good
progrémming style {(Alford, Hsia & Ferry, 1977; Chi, Morah
& Tausner, 19743 Irby. 1977; Fhailany & Holland, 1973;
Mize, 19763 Perry % Weymouth, 1975; Senn, 1974). The
emphasis in computer education today'is for "good"
programs, not merely correct ones (i.e., those that
process data curréctly). "Good" programs employ all the
techniques of structured programming: top-—down design
{(see Footnote 1), frequent use of comment statements,
indentation to indicate refinement, readability,
expandability and understandability {(Bezanson, 1975;
Miller & Fetersen, 19813 Qgdin, 1972).

Fernighan and Flauger of Bell Laboratories (1974)
strrongly support the practice of critical readiﬁg és a
prelude to learning how to write better programs in the
first place. By having to understand programs written by
others and by writing code for others to read, students
hecome aware of a necessity of clarity in their programs.
Students learn the value of detailed documentation and
structuwred format and are more conscientious in all
phases of a programming project. It i; found that this
clarity in program writing aids the reader and the writer
in lecating errors in pregrams that do not run or run
incorrectly (Freeman, 197463 Lane, 1973; Nievergelt, 1974;
Roth, 19753 Tam % Busenberg, 1977).

3. Debugging programs written by members is the

third shared activity within the group. As programs are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

read by team members they are not only scrutinized for
programming style but also for syntactical and logical
bugs. HMembers also perform walkthroughs2 with different
data sets to help locate logical problem areas for team
membérs. This results in a reduction of individual
debugging and editing time since programs get reviewed by
team members before they are run on the c.omputer.

Additional consequences of these activities are more
efficient use of faculty time, since students now have
others to turn to for help. and of academic facilities,
since the majority of errors are caught before any
terminal time is used. This in turn reduces, and in some
cases, eliminates, student frustration, tension and
anxiety {(Newman, 19733 Shelly & Cashman, 1977),
consequently producing an increase in self-esteem and
self—-competency and encouraging a positive attitude
toward computers and computer programming for the

beginning student.

2y walkthrough is the process by which members of
the programming group review the design of the algorithm.
They "walk through" the input and processing to look for
errors in logic and syntax and criticize various aspects
of the program design {(Bohl, 1982). .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frocedural Concerns When Emploving Group Frogramming In
Introductory Courses

The use of group programming in the classroom
effects practical concern in the following areas:
faculty time requirement, student time requirement,
grading procedures, group. formation and size.

i. One of the main deterrents, cited by educators,
to applying group preocess in intreductory computer
programming courses, is the amount of faculty time
required for success. Teamworhk may be new and unnatural
for both the student and the instructor and may prer
exhausting for beoth {(Crenshaw, 1978; Perry % Sondal,
1978) .

Although the commitment required in preparing,
developing and especially in maintaining contact with
group members iz considerably more than in a traditional
programming class, Irby (1977) views programming within
girroups as an excellent alternative to the classical
lectwre approach when classes are kept small.

Monitoring the action and pregress of each group, as
well as the participation and progress of the individual
student in the class, is a vital facet of the
instructor*s job (Guha, Carr & Smith, 1977). The
instructor®s role becomes that of project manager (Eaker,
1970; Irby, 19771, mediator, consultant (Menninga, 1974;
Williams, 1976) continually encouraging and counseling

group members throughout the term (Homever, 19773

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bhailany & Saxon, 19783 Korfhage % Smith, 1974; lemos,
1978; Moccidao, 1978).

This considerable increase in workload for faculty,
especially for evaluation, is somewhat offset by the
easing of the daily work accomplished by getting students
to answer many of their own gquestions or those of their
group members and by having to relate to a8 few groups
instead of to a couple of dozen students (Artzt, 1979,
Shelly & Cashman, 1977).

2. Heavy time commitments are reguired not only from
instructors but from students as well. Although a major
complaint of students in any introductory computer
programming couwrse is that the course is demanding of
their time, more so than the typical three-credit course,
this is especially true in the course that emplays group
process., Az lectures are turned into group discussions
of programs or projects,; students are forced out of their
passive reoles into active ones. Now they must
communicate orally as well as on paper and time to meet
with group members during class as well as ocutside of the
classroom must be arranged (Mavaddat, 1976; HMenninga,
1974, Tam & Busenberg, 1977: Weaver, 1978, Williams,
1276) .

The success of the programming within a group
approach is dependent upon the involvement of all the
students, and, with each member being required to

critigue programs as well as write them, specific

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

schedules must be followed strictly. Frocrastination
must become a thing of the past in order for the group to
function {(Teague, 1981) and it'is expected that the
interdependence of the group will bring peer pressure to
keep deadlines (Freeman, 1976).

However with many students having job and/or home
responsibilities, team meetings scheduled in addition te
the class time may become extremely difficult or even
impossible {(Crenshaw, 1978; Freeman, 19743 Homeyer,
1977). Scome students may resent spending time outside of
the classrocom and may not be willing to invest the time
demanded for the group project (Buck & Shneiderman, 19763
Costella &% Schonberger, 1977, Khailany & Saxon, 1978;
Ripley, 197%).

The time spent on informal evaluations of each
other’s programs and ocutside of classrcom meetings is
zomewhat offset by the saving of time normally spent on
discovering syntactical, legical and spelling errors and
by the reduction in the number of runs required to
produce a correct program (Shelly & Cashman, 1977;
Weinberg, Note &).

3. Resides the major complaint of the time
requirements by the instructor and student, group process
demands special grading technigques. 6Grading a student®s
program is, in general, a difficult task.

Froblem—solving is an individual., personal activity and

one cannot expect all ideas to emerge in a rigid,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

disciplined fashion; but the grading of a program often
may be the only sowce of direct contact between
instructor and student (Gries, 1974).

Today simply getting programs to work by any means
whatsoever is no longer acceptable. 0Obscure programs are
penalized and reqguirements of consistent statements,
documentation, visible structure and design are upheld.

Reflecting this, computer science educators have
grading procedures that vary from allotting SO% for
design and documentation and 0% for processing
(Williams, 1976&6) to 20% for precessing and BOY% for design
to 8OY% for processing and 20% for design (Hazen, Note 7).

When group process is employed in the programming
class, the task of grading becomes even more difficult.
MNow the instructor must be able to evaluate the
performance of each student working in the cooperative
group milieu {(Guha, Carr & Smith, 1977). It becomes
necessary to keep written records and have freguent
interacticns to keep clear the relative strengths and
weaknesses of each student {Arnow, 1981l; Freeman, 1976,
Spence & Groin, 1978).

Some instructors give all students in the group the
same grade for the project they complete {(Freeman, 1976&;:
Schulman, 1977). Some prefer instructor and teammates to
be involved in evaluation. This grading method
necessitates peer reviews, written critiques and

evaluations of team members® programs (Kenworthy &

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

Redigh, 19793 khailany ¥ Saxon, 1978).

Other instructors may specify the following grading
procedure; 15% for oral presentation, 70% for written
presentation and 15% for team performance. Leadership is
rewarded and "passengers' are penalized. How the latter
is determined was not specified by the practioners but
may become ocbvious in individually taken oral and written
exXams.

4, Another concern reported by those employing group
process in computer science education is how the groups
shouwld be created. Groups in programming couwrses are
generally formed using one of three procedures: random
selection, self-selection or heterogenecus selection done
by the instructor.

In upper level computer courses where the ability
and interest of the students is somewhat homogeneous, the
method of random selection is often used. But in lower
level couwrses this random approach may form & group
consisting ehtirely of weak students and it offers the
passibility of placing students with strongly conflicting
personalities into the same group.

Some instructors do random grouping for each
assignment. In this manner, if groups with personality
conflicts or members of low ability are formed, it is
enly for a short pericd of time (Crenshaw, 1978; Lemos.

19781) .

To avoid these problems other computer educators

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

permit students to form their own groups. In this method
friends often choose each other and although personality
clashes may be avoided, the problem of students of low
ability being left out or all placed in one group may
occur (Homeyer, 19773 Ferry & Weymouth, 19735).

Additionally, in a study done by kKorfage and Smith
(1974) self-selection led to a poorly functioning group
when & strong intimate power struggle developed between
two friends on the same team.

A variation of the self-selective method used in
upper level cowses is to present the class with a list
of suggested projects (or subroutines) and have students
select the one that interest them most. Those students
signing up for the same project (or subroutine) form a
group (Cock, 19773 Irby. 1977).

However the method of group formation receiving most
favorable report is the one in which the instructor
balances the members® abilities to form a heterocgeneous
group. Sometimes that balance is based on how the
students performed on a programming assignment when they
were ungrouped (Crenshaw, 1978): sometimes the grade
point average or previous experience in computers or
group leadership is considered {(Comaa., kramer, & Fenney,
1978; Homever, 19773 Ferry &% Weymouth., 1273; Schulman,
1977 Williams, 1976).

The size of groups varies as much as the methoed of

formation. Everything from a "two-member casual joining"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

to a declared seven member team is considered a group in
computer science programming. Scome instructors prefer
groups of two or three students (Cooper & Lane, 1976;
Freeman, 1976; FKenworthy & Redish, 19793 Forfhage &
Smith, 1974; Lemos, 19783 Flum & Weinberg., 1974;
Ruschitzka, 19773 Schulman, 1977):; whereas others claim
that four teo five to even seven member groups are the
cptimum (Comaa et al., 1978; Crenshaw, 1978; Moccido,
19783 Tam % Busenberg, 19773 Williams, 1976).

Freeman (1974&) states that the optimal group size is
two or three. In larger groups there is difficulty in
scheduling weekly meetings and too much opportunity
erists forr a student member not to carry a fair share of
the load. It seems that a balance between a two-member
group, where a personal relationship may be distracting
and a fouw-—-member team where some students could be left

out or leave themselves out, is a three—-member group.

Three Recent Studies Evaluating The Group Programming
Instructiocnal Method

Study I

Emploving three-member groups, EBasili and Reiter
(1981) developed a process metrics that substaniated the
effectiveness of disciplined team procedures in an
elective computer course for advanced undergraduates and
graduates. The comparative experiment involved

thrree—-person disciplined groups (DT), three-person ad-hoc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

groups (AT) and ad-hoc individuals {(Al):; all invelved in
software development.

Although a reasonable degree of homogenity was
assumed to enist among personal factors of participants,
the experimenters identified two uncontrolled variables
to be persconal ability and experience and amount of
actual timeseffort devoted to the project. These were
inferred to vary in & random manner among the groups and
with information from a pretest gquestionnaire, an attempt
was made to balance the ability/experience of the DT
group.

The teams worked independently and the computer
activities of each were unobtrusively and automatically
monitored by & specially instrumented compiler as the
software projects developed.

Basili and Reiter were concerned with both the
procese used and the product produced by each of the
groups. The "heart" of the disciplined team approach was
the formal walkthrough (see Footnote 2) reguired of all
its members and the reported results strongly supported
the effectiveness of this disciplined methodeleogy in
building reliable software efficiently {(i.e., fewer bugs,
fewer revisions). Moderately substaniated by the

wperiment was the claim that the product produced by the
DT closely resembled that of the Al and was no worse than

that of the AT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

59

Studz I1

Claiming that every programming class, regardless of
whether it‘is an introductory class for non—-majors or the
final programming class for majors, should include formal
peer review, Shelly and Cashman (1977) designed
experiments to study the ahility of three—member groups,
both of beginners and advanced students, to improve the
productivity and guality of programmer software.

Although students learn from making errors and firom
language diagnostics and incorrect output from their
programs, Shelly and Cashman objected to the idea that in
data processing failure is considered a natural
ocourrence.

The experiments demonstrate that peer review of
program design and coding caught errors early and
conserved time and avoided frustration caused by errors
heing found during actual program runs. BReing aware that
their programs would be reviewed, students

took more time in preparing the programs and were

mare conscious of whether their program was right or

wrrong then they would ke in the case of their merely
coding the program and "throwing" it on the computer

to see what would happen. (p. 129

The students were divided into three—-person groups,
but the programming was not a group project. Each
student completed the design of the program individually.
The designs were reviewed but not compared by group

members. The walkthroughs {(see Footnote 2Z) insured the

group member that his/her program was valid and leogical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and would solve the problem. With confidence, the
student then converted the design to code and the coded
program was then reviewed in a similar fashion for good
programming style, syntactical and logical code errors
before it was run. If the design was determined
incarrect, the student was directed to redesign the
aplution and arrangements to reconvene as a reviewing
group had to bhe made.

Instructors were available as "chief programmers”
(Baker, 1271) and consultants and monitared the
performance of each team to identify non—participating
students. Each student submitted the number of errors
detected, number of runs necessary and the program for
the instructors to evaluate. Students received both an
individual grade and a team grade determined by the
success of the execution of all programs for a given
team.

Shelly and Cashman, aware of the problems with
conducting structured walkthroughs in an academic
environment, report that personality conflicts,
differences in ability, non—participating students,
improper use of the design and code of participating
members by other members of the group (i.e., the copying
of programs), could be somewhat controlled by changing
group members for each assignment.

However, the problem of absences on the day of the

walkthroughs (see Footnote 2) could not be solved by the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

experimenters. The thi-ee—-member group then functioned as
a pair but the absentee needed review from the group
outside of normal classtime.

The investigators found that students in the study
produced a better product and spent more time in
educationally meaningful activities such as learning more
about program design and good programming code.

Although the introducteory student may not be

well versed in a given language, three students on a

team have the distinct advantage that what one

doesn®t know, one of the others probably does. {p.

15)

Study I1I

In an attempt tc establish empirically the "alleged"
effectiveness of formal peer review and team debugging
technigques in program language learning, Lemos (1979a)
conducted a comparative study in an introductory COROL
course involving 215 undergraduate business majors.

Lemas randomly grouped students into four—member
teams to read and critique team members program listings
and ceodes. The group review session were scheduled by
the instructor in a well-defined regular manner. The
teams were reformed after the first run te discuss any
uvndetected errars found by the computer generated
diagnostics. The final successful run of the program was
the responsibility of the individual students. For each
assignment different four—member teams were formed.

The study determined that the experimental groups

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

62

received signficantly higher program writing scores on
their final exams, and used significantly fewer runs to
complete the assignments. No difference was found in the
amount of homework completed by both the experimental and
control classes.

Lemos concluded that classrcom lectures can be more
effectively supported by structured walkthroughs (see
Footnote 2) conducted within groups and that although the
results were promising, further empirical studies
involving team activities in learning a programming

language were needed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAFTER IV

FROCEDURES OF THE STUDY

The Setting

This study was conducted at a private,
coeducational, suburban fouw-year college during the
Spring 1982 semester, and involved three classes of an
introductory level course, entitled Structuwred
Frogramming Using FORTRAN. The educational institution
services approaximately 10,000 part-time and full-time
commuter students under a policy of open enrollment,
offering certificate, associate, bkachelor and master
level degrees, within day, evening and weekend course
schedules., The college is recognized as a leader among
theose institutions responding to the "new" student on
campus (see Appendix AJ.

Structuwed Frogramming Using FORTRAN is designed as
the second course in the computer science sequence at the
institution. It is intended to substanially develop the
student’s ability to employ gond programming techiques
such as structured format, top-down design (see Footnote
1) and extensive deocumentation while introducing the
student to the high level language, FORTRAN. The

students are taught to solve problems by forming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

algorithms using a structured pseudocode3 and to

translate them into FORTRAN code, to be erecuted on a DEC

20 FDF/11 minicomputer.

Selection of the Experimental and Control Classes

All three classes met during the day, one at the
main campus on Monday and Wednesday from 2 a.m. to 10:350
a.m., and two at the branch campus, one on Saturday from
? a.m. to 11:50 a.m. and the other oanhursday from noon
to 2:30 p.m. FEoth campuses draw the majority of their
students from the Westchester suburbs.

Although the two classes at the branch campus would
appear to be more similar (meeting on same campus, once a
week), it has been found (observed by investigator and
confirmed by colleagues) that weekend and evening
students are usually employed full-time, older,
non—-matriculated and often taking one couwrse for
self-enlightenment. This was substaniated by the student
gquestionnaire filled out by each student in the study
during the first class meeting. '

Consequently the two weekday classes were selected
for the major part of the investigation——the comparison

of the student working within a fixed programming group

3peeudocode is an informal design language that is
used to write algorithmic structured problem solutions.
The solution is then translated into a formal programming
language.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

65

to the programming student working individually, within
the traditional lecture method. Random selection
assigned the experimental treatment to the branch campus
afternoon class and the control to the main campus class.
The physical separation of the classes further inswed
the segregation of the teaching methods being examined in
the investigation.

Group programming was employed also in the Satwrday
morning class but the students were placed in different
groups for each programming assignment. Having the main
campué class as the control placed both classes emplaoving
programming groups on the branch campus where students
could meet and discuss the programs from the couwrse in

the open fashion they were being directed to deo in their

classes.

Determination of Homogenity Of Classes

In prder to substaniate any observed experimental
results as comparable, the diversity of the college
student body necessitated assessing the backgrounds of
all the subjects in the study. Each student was reqguired
to complete a student gquestionnaire (see Appendix KB, on
which the student listed his/her sex, age, number of
work-hours per week, number of college credits completed,
number of computer courses completed, number of credits
being carried for the semester.

In additicon, the student’s scores on the college

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

placement examinations covering arithmetic, algebraic and
verbal skills were included in the assessment (see
Appendices C, D and E). The ceollege requires all
matriculated students to be given placement exams;
however, many subjects in the study were either transfer
or certificate students or just were taking one course
and as such had not taken any placement examinations.
These students were given the examinations by the
investigator during the first few weeks of the term,
under the conditions prescribed by the Rasic Skills
Coordinator, and at times convenient to both examiner and
examinee.

The arithmetic, algebreaic and English usage
placement examinations are multiple chpice and were
graded by the investigator. A fowth component of the
placement procedure is the writing of an essay defending
a position taken by the student with respect to a.
situation presented. Three English instructors are
needed to grade this examination. Since these services
were unavailable during the semester, this part of the
placement procedure was not considered for pretreatment
evaluation.

In order to complete an accurate assessment, it was
necessary to ascertain the pretreatment programming
ability of the students. The prerequisite for Structured
Frogramming Using FORTRAN is a course called Introductien

to Frogramming, which combines data processing with BASIC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

language programming. The investigator has taught that
course several times and has cp—-authored the programming
tents used by the students (Farley. Grossman &
Tucciarone, 1979; Grossman & Tucciarone, 1981). However
many of the students in Structured Programming Using
FORTRAN do not take that required course because they
have had a similar cowse{s) elsewhere (perhaps in a
different programming language).

To measure the pretreatment programming skill of all
the students the investigator designed a short (45
minutes) Freliminary FProgramming Proficiency Test (FFF).
The FPF {(zee Appendix F) is language independent and
tests those aspects of programming skill that a student
would be expected to acquire in a first exposure to a
programming language.

The investigator had conducted pilot studies in
Spring 1981 and in Fall 1981, and had administered the
FFF test to six classes of Structuwed Frogramming Using
FORTRAN. It was found to assess adequately the basic
programming skills of students entering that course.

The FPF is divided into three major parts:
debugging., reading and writing.

1. Debugging. Students are given grammatical rules
of a BASIC~type language and are required to detect
syntactical errors in lines of code.

2. Reading. Students are required to demonstirate

the understanding of a given algorithm, presented as &

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

flowchart, in detailed multi-step levels, by determining
the output given specific sets of input.

Fo Writing. Btudents are required to perform four
separate modifications of an algorithm presented in
flowchart form and as a coded EASIC program. (The
modifications may be done in BASIC code or as drawings on
the flowchart.)

Specifically tested are the abilities to use
assignment statements, initialize a variable, establish
cumulating values, employ looping, search and compare
data, branch conditionally, manipulate character data and
handle simple data structures.

Students may have strengths or weaknesses in any one
or all three parts of the FPFP. A student who may not
have strong analytic expertise may be a skillful debugger
and so do well on Part 1 and poorly on Fart 3. Since the
three aspects of programming skill are all important in
the process of programming {(Lemos, 19773 Shneidermans
1980), strength in an one of the them would be a positive
contribution to a programming group.

To get a general programming performance profile of
each subject the PPF score was the sum achieved on all
three parts but the specific strengths and weaknesses
were noted. Although the FPF was not able to accurately
rank the students, it was able to discriminate between
the two extremes of programming performance.

The experiment did not begin until the third

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

programming assignment and so the grades on pragramming
assignments #1 and #2, and the writing time, terminal
time and number of runs required for programming
assignment #2 were also included in the student
comparability assessment.

Eighteen items were used for the student
comparability assessment. Their codes are discussed
bhelow:

1. Sex. Male students were given a code of © and
female students a code of 1.

2. Age. Btudents of traditional college age,
seventeen to twenty—-two, were given a code of 1; students
whose ages were above twenty-two were given a code of 2.

ZF. Educational Status. The educational status of
the student was based on the level of formal education
that the student had completed: freshman level or below
received a code of 1, sophomore level, a code of 2,
junior level, a code of %, senior level, & code of 4,
college graduate level, a code of &, and graduate school
level, a code of 6&.

4, Semester Load. The semester load was the actual
number of college credits being taken by the student for
the semester in which the experiment was conducted.
Minimum semester load was three credits.

5. Computer Rackground. The computer background of
the student was the number of computer course credits

completed by the student. Minimum computer background

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

required for the couwrse in which the experiment was being
conducted was three credits.

6. Number of Work-hours Per Week. The number of
hours per week the student was emploved in a paying Jjob
was used for this item.

7. College Flacement Exam in Arithmetic. A code of
0 was used to indicate that the student placed below
average level; a code of 1 indicated that the student
placed at the average level; and a code of 2 indicated
that the student placed above the average level in-
arithmetic ability.

8. College Flacement Exam in Algebra. This item was
coded similarly to Item 7.

9. College Flacement Exam in Usage. This item was
coded similarly to Item 7.

10. PFF Part 1. The score achieved by students on
Fart 1 of the PFF reflected the student’s ability to
locate and correct errors in programming code. Minimum
score was zero and maximum score was ten.

11. FPF Fart 2. The score achieved by the student
on Part 2 of the FFF reflected the student®s ability to
read a computer program. Score range was from zero to
ten.

12. PFP Part 3. The score achieved by the student
on Part 3 of the FPF reflected the student®s ability to
modify an existing computer program. Score range was

from zero to ten.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

. Total PFF Score. BScore range for this item was
from zero to thirty and was the sum of the scores
obtained by the student on Items 10, 11 and 1Z.

14. Grade of Frogramming Assignment #1. The first
assignment esszentially directs the student through all
the steps involved in creating and editing a program file
and is given as the first assignment in &11 Structured
Programming Using FORTRAN courses. Score range was from
zero to ten.

15, Grade on Frogramming Assignment #2. The second
assignment requires the student to write a simple program
using good praogramming style and reflects the material in
the first two chapters of the texthbook used in the
course. Score range was zero to ten.

lé. Writing Time. This score represented the time
(in hours) the student spent writing, designing and
carrecting the program solution for assignment #2. The
time was recorded by the student.

17. Computer Terminal Time. This score represented
the time (in howrs) spent by the student at the computer
terminal for programming assignment #2. The time was
recorded by the computer and displayed for the student at
logout.

18. Number of Runs. This item was the number of
runs needed for a correct execution of programming
assignment #2Z and was recorded by the computer as the

generation number of the student’s file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The 18-item student assessment for homogenity of
classes was analyzed by t-test statistics to identify any
items demonstrating significant differences in the three
classes. Any items so identified were considered when
interpretating the results of Comparisons 1, 2, and 3.

Tables 1 presents the results of the analysis of the
18—-item assessment of homogenity for the contreol class
employing the traditional metheod of individual
programming and for the euperimental class emplaving
fived student programming groups. Table 2 presents the
results of the assessment for the control class and the
class in which the students were programming in rendomly
assigned groups. Table 3 presents the results for the
two classes employing the experimental instructionsl

methods.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

Table 1

Item Mean and Standard Deviation on the Student
Comparability Assessment for Comparison 1

Control Class Experimental Class
{Individual {(Fiyed Group
Frogramming) Frogramming?

Item ™ SD i 8b

1 LATH2 » 312 - SO0 T30
2 1. 3333 - 483 1.4000 - 503
= 2. 0952 1.411 2.9500 1.932
4 12,5258 . 558 8.4500 S.094%
bl 4, Q000 1.449 4, 9500 ZL120
& 3. 2857 12. 990 17,9000 18.474
7 P52 =218 1.0000 « OO0
g 1. Q000 = 000 - P00 . 224
9 1.1429 - S73 1. 2000 « G223
10 &. 9524 1.870 & . 4500 1.394
11 7.714Z 2. 004 7. 5500 Z2.685
12 4.11%0 Tl 0GE 4., 5250 2.4688
13 18.78%7 . TO0 18. 5280 4.959
14 7.7619 T. 318 9. 2900 1.891%
15 7. 728646 . 150 8. 4000 5.222
14 1. &500 1.504 1.46944 1.077
17 1.5556 1. 228 1.2944 . 747
18 S.3EE3 S.018 2.833%F 3.451

ip £.05

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2

Item Mean and Standard Deviation on the Sthent

Comparability Assessment for Comparison 2

Contrel Class
(Individual
Frrogramming)

Item M
1 4762
2 1.3333

10

i1

16

17

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12,8268

4, Q000

L

13, 2857
. 9524

1. 0000

7. 7286
1. 6500
1.55586

T
P R IR IR

*E<.Cﬁ

SD
LE12
. 487
1.411
T, 558
1.449
13,990
L218

- OO0
LE73
1.830
Z. 004
3. 053
3. 700

T ELS

v e

G5.018

~

Experimental Class
(Changing Group
Programming?

™ an

. 5789 . 507
1.7%68 «AT2%
2. 3263 1.9%4

6.7895 4.4467%

S 0526 2.838
F1.0526 11.525%

. 9474 229

. 8947 « 315
1.2632 452
6.4211 2,036
7. OE24 2.758
F.7368 3.186
17.2108 6.877
9. 0526 1.877

1.7474 1,992
19737 23
4, 0000 4,761

74

Table 3

Item Mean and Standard Deviation on the Student
Comparability Assessment for Comparison 3

Experimental Experimental

Class Class

(Fired Group (Changing Group

Programming:? Frogramming)
Item M =38 M sD -
1 » DHO0 L3210 . 5789 - D07
2 1. 4000 » S0O3F 1.7368 » 452
= 2. 9300 1.932 2.5263 1.954
4 8. 4500 T.094 &, 7895 4,467
S 4., 9500 F. 120 5. 0526 2.8%8
é 17. 9000 18.474 1.0526 11.525%
7 1.0000 « OO0 . 2474 « 229
8 « FEO0 . 224 . 8947 - 31T
9 1. 2000 »O23 1.26%2 = 452
10 &L 4500 1.395 b.4211 2.036
11 7 . SE00 2.4685 7.0526 2.758
12 4, 5250 2.688 T, 7368 T. 184
1= 18. 3250 4,959 17.2103 &.877
14 9. 2900 1.891 F.0526 1.877
15 8. 4000 F.222 8.184%2 . 185
i6 1.6944 1.077 1.7474 1.992
17 1.2944 747 1.8737 1.274
18 2.83E3 F.481 4, 0000 4,761

*E<.05

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

Formation of Groups In The Experimental Classes

Considering the computer background of the students
and their FFP score, the students were divided into three
categories——"crackerjack" programmers, "weak"
programmers, and "between—the-extremes”" programmers. The
specific score at which one category ended and anocther
began was dependent on the particular scores in that
class and where the appropriate divisions had to be made
to insure that the each category would have the same
number of students. This procedure was employed in an
attempt te maximize the possibility of forming
heterogenecus three-—person groups in which one student
fi-om each category would be selected.

In the class in which the heterogenecus groups would
be fixed for the entire =emester, the investigator
balanced the programming ability (FFP score)/experience
(recorded on the Student Information Sheet) of the
participants and formed three-person groups (Rasili &
Reiter, 19813 Shneiderman. 1980).

In the class that was to experience group
programming within changing groups, a computer program
(see Appendiy G), written by the investigator, randomly
generated different heterogeneous three-person groups
{i.e., emplovying the method of stratified random

selection) for each programming assignment. Ceincidently

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

both branch campus classes initially had student bodies
that were multiples of three. However as the term
progressed student attrition necessitated combining some
groups and permitting groups of two students. Care was
given so the reformed groups maintained the intended

balance wherever possible.

The Cow-se Qutline

All three daytime classes were taught by the
investigator and covered the same material, from the same
texts and lecture notes and at the same pace. One
section was directed to program individually, another
section was directed to program within assigned fixed
heterogeneocus groups and the last section was directed to
program within randomly assigned heterogeneous groups
that would be changed for every programming assignment.
The three classes shall be referred to, respectively, as
IND, FHG and RHG.

A course outline was distributed to all sections at
the first class meeting. It detailed the objectives and
the pacing of the course, the material covered in each
lecture, the readings from the texts, the schedule of
assigned programs and grade evaluation procedures.

The IND's ocutline included the familiar edict——"Do
vour own work. Any programs that are shared will cause
both students invelved to share a single grade" (see

Appendix H). The outline pof the FHG and RHG classes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

replaced that with a few paragraphs about team
programming, peer review and structured walkthroughs (=ee
Appendix 1), To foster group interaction and, more
specifically, cocperation, students were told that their
programming assignment grade would be an average of the
grades received by all the members of their team for that
assignment. Their course outline also included a listing
of what particular stage of the assigned program would be

due in class each weelk.

The Broup Freogramming Frocess

The greoup programming process was described to the
FHMG and RHG sections as three, twenty-minute class
meetings per assigned program. The first would be for
problem analysis, and include sketching of an algorithm
(flowchart) and writing of a pseudocode sclution (see
Footnote 3).

The second session would be an exchange of their
FORTRAN coded program seolutions, hand written or listed
by the computer. Each student would peruse his/her team
member s program for syntactical errors. Data would be
supplied with each assignment so the students could walk
through each program in search of legical bugs. Up to
this peint no machine-student (i.e., computer-program)
interaction was required.

After the noted bugs were removed, the group would

meet in class for a third time to go over the first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

computer run of each team member®s program. During this
session the group would discuss the errors found by the
computer (the compiler diagnostics) that caused a program
not to run or the incorrect results of a program that did
run. Students would note the errors that the group
review had missed.

The third group session for an assignment overlapped
with the first group session for the next assignment.
During that class meeting the groups would meet to finish
reviewing each cther®s proagram run, and then would listen
to a lectuwre. Then the same group, in FHG, and a new
group, in RHG, would meet to analyze the next assignment.
Questions on the lecture dealing with new material could
be asked of group members as well as of the instructor.

The final correct code and run of a p;mgramming
assignment was the responsibility of each student to
complete and hand in the next week. Meetings with
members of the group ocutside of the class were
encouwraged. For many students with family and/or job
commitments this was often impossible.

To facilitate the euxchange of wark between members
in a group, the campus terminal room contained a box
into which the members were tao deposit and/or pickup a
copy of the completed code, listing or run of a group
member®s program, due to be discussed in the group review
session that week. This procedure supported the free,

open atmosphere proposed in class in which there was to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

be no secret coding and it was "okay" to see programs of
others and receive help. If the "drop-off" box were used
by the team, each member would be able to review the
other member’s programs before the class met again. Of
course, lack of time, always a limiting factor, prevented
many students from deing assignments early and
participating in the "drop-off" box.

All three classes did seven assigned programs that
became progressively more diffiéult. Distribution of
exemplary solutions was done in an effort to cure the
problem of assignments being handed in late. Deadlines
had to be adhered to in order to insure that students
would keep pace with the course and be able to
participate in the group process and so the penalty for
late assignments was a S04 reduction in program
assignment grade {(Fasdick & Mackey, 197%).

Left to their own devices, students will postpone

working on a program they de net fully understand

and then attempt to do it in a burst of energy near

the due date. {(Noonan, 1979, p. 188)

The classroom time spent by the FHG and RHG in group
wark was used by the IND for individual analysis, design
and desk checkingd of programming assignments.: going over

homework and doing classroom problems and programs.

4n desk check is a visual inspection of the program,
tracing the path of sample data through the program, to
eliminate errors in syntax and logic before submitting
the program to the computer ({(Sanders, 1979).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

In all secticons the instructor walked around the
room and acted as as consultant and resowrce
person——giving hints when necessary. Any gquestions that
came up frequently, indicating a source of
misunderstanding, in any of the three classes were

discussed in front of the entire class.

Data Cellection by Btudents

Consideration was given to two devices that may bhe
used to record anecdotal and self-reported data from the
students in the study. One method is to have the student
maintain a log book during the semester, recording
various facts about each programming assignment and hand
in the leog boeck at the end of the course. The other
method is to have the students hand in the reqgquested data
after each programming assignment.

The first method was used during the pileot studies
conducted in 1981. Each student was requested to
complete a log bock, recording the total time spent
writing and rewriting each program, the number of runs
needed to produce a correct pregram, the teotal time spent
in the terminal room and any comments, pro or con, about
the specific program assignment or, for those in the
grouped classes, about the group programming experience.
Even though the students were constantly reminded to keep
their log books up to date it proved to be too much of a

chore for them. At the end of the semester most student

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

log books were empty, inadequately filled out or hastily
finished. This device proved inefficient.

Consequently the second device, which required
students to hand in a summary sheet with each completed
programming assignment, was employed in this study and
proved to more effective in obhtaining the requested data
firom the students.

On the Assigned Freogram Summary bBheet (see Appendiux
J) the students recorded:

1. The number and type {(syntactical or logical) of
errors found in the program before it would run
correctly. (The assumption here is that eventually all
programs banded in run successfully:; however, often the
output is incorrect or the pragram has net considered
certain data that would cause errors if they had been
used.)

2. The time to analvze the problem, write., and
rewrite the coded solution. (For the RHG and FHG this
included the time gspent in group sessions in and cut of
class.)

2. The number of runs of the program before it
"worked." (This was recorded by the computer and
appeared on the printout as the generation number of the
file. For example, EGRO.FOR.28, indicates 28 revisions
of the file EGRD.FOR.)

4, The time spent on the terminal to get a completed

assignment. {(Included would be the time used to create a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

file, type in a program, edit the program, execute the
program and then, if necessary, edit énd execute the
program again wuntil it "ran" successfully. This was
recorded by the computer and printed after the student
logged off the system. All the terminal use time for
that assignment would be totaled by the student and
recorded on the summary sheet.)

The summary data sheet method of student data
collection proved more successful in keeping all the
students up to date in their data collection than the
student log bock method.

In addition to the summary sheet: the grouped
classes were required to rate the effectiveness of the
agroup walkthrough for that programming assignment {(see

»

Appendix E): and to insure that they read each other’s
progarams, do evafuation ratings on the programs written
by their team members (zee Appendix L). Roth of these
ratings used a seven-point scale and were developed and
used by Shneiderman (1980),., The students participating
in the group programming esxperience in the pilot studies
of 1981 were asked to uze and critique the review
ratings. Any questions found to be ambigious,
insignificant or inapplicable to the classroom situation
were eliminated and the resulting ratings were used in
the present study.

The investigator discussed the meaning and intent of

each gquestion (on both rating sheets with the RHB and FHG

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

classes) prior to the first review in an effort to
decrease the chante of different interpretations of the

guestions and the rating scale (Shneiderman, 1980).

Grading Procedures

Frogramming assignments were graded on a scale of
zero to ten. Each programming assignment was compared to
a model selution witten by the instructor. &ince there
iz no one correct solution {(Lemos, 1977)., and the
efficiency of the program measured by the amount of CFU
used during program execution (also printed at logout by
the computer) and the number of lines of code were not
considered, programs that processed the sample data and
produced correct results received eight out of ten
painte. The remaining two points were earned for '"good
programming style.” The consensus among computer
programming learning experts is that certain featuwes of
ztyle help produce programs that are easier to read,
easier to correct and easier to modify.

The basic style components emphasized in Structured
Fraogramming Using FORTRAN are {(a) overall top-down design
(see Footnote 1), (b) clearly worded descriptions of the
purpase and the procedure of the pregram, (c) use of
meaningful mnemonic variable names, {(d) description of
use of each variable in a data dicticnary, (e
declaration of all variables, (f) indentation te show

strructure and grouping, (g) extensive use of comment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

statements for anything that is not obvious, and (h)
clear descriptions of input format and coutput display. @A
auarter of a peoint was deducted for each featue missing
on a program. Each programming assignment reflected
approvimately one chapter in the course textbook and was
similar to the problems at the end of that chapter.

The midterm and final examinations were shown to
departmental colleagues whe agreed that both tests
responded to the cobjectives listed by the instructor.
The format of the midterm and final were similar to that
of the FFF except that they were both open-—book
examinations. The first part of each examination
presented lines of code, data names, numeric and string
values that the student was reguired to determine as
valid or invalid, and included the interpretation and
writing of simple lines of programming code that
performed calculations or evaluations.

The second part of each examination presented a
program written in pseudocode (see Fooltnote) or in
FORTRAN code. The student was required te walk through
the program with specific data and determine the output.
These first two parts of the midterm and final
examinations were graded objectively.

The third part of each examination required the
student to write a program in FORTRAN. A model answer,
written by the instructor, was reviewed by two colleagues

ot the computer faculty. Feint distribution was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

discussed and the version used for the grading procedure
was determined.

Frograms written by the students in response to the
third part of each examination were graded by the two
computer science faculty members involved in the soclution
design and the instructor. The results of the three
graders agreed in 88.3Y% of the cases and the differences,
when they occurred, were no more than tweo points.

In order to maintain examination security, twe forms
of the midterm and final were used. The IND and FHG
classes were given the same examinations but the RHG
class received alternate forms. The framewordk of both
examinations were identical and tested the same
programming skills (see Appendices M and N).

The students in the ceontrol class, IND, that met
twice a week took the first and second parts of the
midterm and final duwring one class and the third part
during the next class meeting. The students in the
esperimental classes, FHG and RHGE, that met once a weelk
took the midterm and final in their entirety during a
single class meeting. Extra time for the examinations

(midterm and final) was available for all students.
itude Moacure

A primary concern of this investigation, in
addition to cognitive gains, is the attitude toward

computers promoted by the participatory group preocess as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it compares to that generated by the traditional
instruction format. The most frequently used methods of
measwring attitude (Likert, 1932) requires subjects to
indicate their agreement or disagreement with statements
about the attitude ohject. Endorsement of the statement
serves as the basis for inferring the existence of
positive or negative evaluations on the part of the
endorser {(Ghaw % Wright, 19467). The investigator
compiled a list of statements about computers and
computer programming from a combination of items on the
Mathematical Anuiety Rating Survey (Suinn, Note 8), the
Minnesota Computer Literacy and Awareness Assessment
(Note 93 and similar surveys used in the studies done by
Hazen (Note 7) and Lemos (1977).

Each statement offered the student five options for
response: stronoly disagree, disagree, no apinion, agree,
strongly agree. The responses were rated on a scale from
one to five or from five to one depending upon whether
the statement about computers and computer programming
was positively or negatively worded.

The survey was administered to 57 students in the
Sprring 1981 pilot study, at the beginning and again at
the end of their semester in Structured Frogramming Using
FORTRAN. Student names were not requested on the survey.
Besides selecting an opinion, the students were asked to
comment on the clarity of each statement. Theose items

that students found ambigious or did not elicit a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

definite positive or negative response were reworded or
removed.

The revised survey was administer to 28 students in
the pilot study of Fall 1981, at the beginning and the
end of the semester, and again they were asked to
additionally comment as to the clarity of each item. The
resultant survey of 18 statements formed the Attitude
Toward Fraogramming Survey (see Appendix 0 and was given
te the IND, RHG and FHBG classes at the beginning of the
term. Gtudents were asked to indicate their course
section but not their names. At the end of the term,
before the seventh progfamming assignment, all classes,
again anonymously, retock the same survey to note the
movement of a class in a positive or negative direction.

Student Reactions te the Course and the Seventh
Frogramming Assignment

Ta aid in the interpretation of the results obtained
in Comparisons 1, 2 and 3, student reactions to the
caurse were solicitated and a seventh programming
assignment wés required.

The seventh programming assignment, a team project.
was a large program that had to be separated into
programming modules. Each member of the team designed
and coded one or more modules. The complete solution to
the assignment required the linking together of all the

modul es. Each member of the team received the same

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

Re

produced with permission of the copyright owner. Further reproduction prohibited without permission.

grade.

The students in the IND class were divided into
hetercgeneous teams (according to the grades théy had
earned in the course) and were included in this
assessment as a comparison to the teams in the other
classes that had been programming in groups for the major
part of the semester.

In addition, all students in the study were asked to
list the most positive and most negative aspects of the
course and make selections from opposite word-pair
descriptions of the course. It was expected that these
cpen questions and directed selections would produce

praise or condemnation for the group programming process.

89

CHAFTER V

ANALYSIS OF DATA

The feollowing hypotheses and subseguent data are
offered in response to the questions posed in the
Intreduction. Comparisons 1, 2 and % examine four
hypotheses each. The organization of the twelve

hypotheses is presented in the chart below.

90

Etogramminqléchigvement Attitude
i ! J
Froficiency] PerseverancelEfficiency
Comparison 1
(IND and FHBE He, Hog Hog Hog
classes)
Comparison 2
{IND and RHG Hog Hog Hoy Hog
classes)
Comparison 3
{(FHE and RHE Hog HOu Hoy, Hoy,,
classes’

Comparison 1

Comparison 1 contrasts the pregramming achievements
and attitudes of students receiving instruction in the
traditional methed of lecture and individual programming
(IND) with those of students receiving instruction in the
experimental method employing lecture and fixed
heterogeneous student programming groups (FHG). Three

dimensions of student programming achievement are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91
discussed. They are programming proficiency, programming

perseverance, and programming efficiency.

Hypothesis One
Ho : The teaching method employing fixed

heterogenecus student programming groups in combination
with lectures, when compared to the method employing
lecture and individual programming. has no differential
effect on student programming proficiency in an
introductory computer programming cowse as measured by:

1. the grades of programming assignments #3, #4, #I5,
#4 (GFAZ, GFA4, GFASD, GFAL),

2, the midterm examination score (MIDTERM),

3. the final examination score (FINAL).

Frogramming assignments are graded on & scale from
zero to ten.

The results of analysis by t-test statistics are
presented in Table 4. A time series analysis of the
grades on programming assignments #1 through #6 is

presented in Fiqure 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

Table 4

Mean and Standard Deviation of Programming Proficiency
Measures Used in Comparison 1

IND FHG

Measure M sp M 8D

GFAZ b TOO0 T.142 8.4500 2.620%
GFA4 & SO00 4,177 8.2300 2.818
GFAS 5. 5857 4.629 7.2150 Z.884
GFAL 5.0619 4,320 7. 6500 T.T777%
Midterm 0. I3TX Q. 707 77 . 8000 14,322
Final 44,7617 22.814 679000 31,007

*p & .05

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

10}

91
] I~
w8t ot FHG
kY o
0])
Fs)
:7 P
0 a
E [
& 5
—-—l6' ©
/] @
w H
P]

5..
g T‘u IND
o]
: ;
o ar €
N vl
o ~
: 2
Y
a3 ”

=

=
o
]
= 2}

l.

0 - ' T —

2 3 4 5 6

Programming Assignments

-

Figure 2, Time series analysis of the mean programming
assignment grades in the IND and FHG classes,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94
The results of analysis by the two—tail t-test

determines that the differences in the grades on
programming assignments #3 and #46, achieved by the IND
and FHG classes, are significant. In beth instances the
FHG class scores higher than the IND class.

The group praogramming approach, with its cooperative
algorithimic designing and coding sessions, appears to
aid its members since the grades on all the programming
assignments in the FHG class are higher than those in the
IND class. However, the grades achieved by the students
in the FHGE class on the midterm examination, in
comparison with those achieved by the students in the IND
class, are lower.

The FHGE class earns higher programming grades on the
first two assignments done individually, but the
difference in the programming grades achieved by the
classes increases after the experimental treatment
begins. Since the student who does not hand in a program
recaeives a grade of zero and all students in the class
are included in the programming grade analysis, this
difference in programming grades between the two classes
must be considered in conjunction with the number of
students in each class who do not complete assignments.

The lack of significant differences in the midterm
and final examination scores in the FHG and IND classes
causes any differences observed in the programming grades

to be considered the results of the group supporting its

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

members in writing programs rather than the group
producing members with better programming skills. Ho,
must be regarded as defensible since the data offer

insufficient evidence to reject it.

Hypothesis Two

Ho,: The teaching method employing heterogeneous
fived student programming groups in combination with
lectures, when compared to the method employing lectures
and individual programming, has no differential effect on
student programming perseverance in an introductory
computer programming course as measured by:

l. the number of students completing programming
assignments on time,

2. the number of students completing programming
assignments late,

I« the number of students not completing programming
asignments.

Table % presents the numbers of students in the IND
and FHG classes in each category for each programming
assignment.

Table & presents the mean and standard deviations of
the programming perseverance measures for students in
Comparison 1. Bignificant results of analysis by t-test

statistics are noted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

Table =

Number of Students in Comparison 1
{A) Completing the Programming Assignment on Time
(E) Completing the Programming Assignment Late
(C) Not Completing the Programming Assignment

IND FHG

Frogramming Category Category

Assignment A R c A =} c
#1 18 2 6 24 0 2
#2 22 o 4 24 1 1
#3 14 4 = 17 2 1
#4 1= 3 g 18 4 1
#S 12 1 8 15 3 2
#6 : ? S 7 15 = 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table &

Mean and Standard Deviation of Frogramming Perseverance
Measures Used in Comparison 1

IND FHG
Measwres ™ (=30 M sD

Number of programming
assignments
completed on time 2.2381 1.480 . 0500 1. 6054

Number of programming
assignments
completed late . BAT . 854 .

i
=

OO 1.100

Number of programming
assignments
not completed 1.0952 1.578 « 4500 1.146

¥p .10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

98

In the IND class, three students fail to hand in
assignment #3; five students fail teo hand in assignment
#4: eight students fail to hand in assignment #3; and,
seven students do not hand in assignment #4%. The
programming assignments #3, #4, #35, and #6 are done in
group sessions in the FHG class and every student, but
one or twe, complete each assignment. In the IND class,
the same assignments are done individually and as the
term progresses more students do not hand in their
programs and receive a grade of zero. Evidence indicates
that as the term progresses more students in the FHE&E
class are completing assignments than are students in the
IND class.

The data supports the consideration of the
instructional method emplaving fixed heterogeneous
student programming groups to have a differential effect

on student programming perseverance. Hop, is rejected.

Hypothesis Three

Ho, 1 The teaching method employing heterogenecus
fived student programming groups in combination with
lectures, when compared to the method employing lectures
and individual programming, has no differential effect on
student programming efficiency in an introductory
computer programming course as measured by:

1. the time spent by the student in designing,

coding and debugging each programming assignment

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

(recorded by the student, listed as writing time and
measured in hours);

2. the time spent by the student at a computer
terminal for each programming assignment (recorded by the
computer, listed as terminal time, displayed at logout,
and measwed in hours);

. the number of runs required by the student for
each programming assignment (recorded by the computer,
listed as number of runs and displayed as file generation
nﬁmber).

Any student not handing in the above data for a
particular assignment is not included in the analysis for
that programming assignment.

Table 7 presents the results of analysis of this
data using t-test statistics. Figuwes %, 4 and © display
time series analyses of the programming efficiency |

measurements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 7

Mean and Standard Deviation of Programming Efficiency
Measuwres Used in Comparison 1

Measure

Frogramming

Assignment #3
Wr-iting time
Terminal time
Number of runs

Frogramming

Assignment #4
Writing time
Terminal time
Number of runs

Frogramming

Assignment #S
W-iting time
Terminal time
Number of tuns

Frogramming

fAssignment #6
Wrriting time
Terminal time
Number of runs

Note.
hours.
ﬁi<.CE

IND

M

1.9264%
2.0134

7.3871

2.1917
2.6182
10, D000

2.8667
2« 7000
12,4444

2. 4375
2. 1000

8. 6250

sD

. 981
. 884
4.181

« P56
1.582

6.841

1.224
2.179
11.226

1.146
. 856

4. 053

1.5062
1.6437

4, Q000

1.9000
23937

7.187G

T 2000
2.873%
G . 6000

2.7000
S.0200

74000

670
- 614
4, 773%

1.264
« Q20

7. 280

1.461
.242

?.448

Writing time and Terminal time are measured in

100

101

4 J
o
o]
o
0
M
31 &
o
]] FHG
= =3
[e
P IND
o oy
g 2 -
o
B
o
H)
= s
0
: :
wl N
= Q
o}
b
53}
0 - t v T
2 3 4 5 6

Figure 3, Time series analysis of the mean writing time
(in hours) per programming assignment in the
IND and FHG classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

4
w
[«
-
o
g FHG
Q
3¢t +
7 :
B
E
o o
O
& - IND
£ 2} £
3]
& o
%
g o
w 5
= 1+ "
Q
0,
%
<]
0 . . .

Figure 4, Time series analysis cf the mean terminal time
(in hours) per programming assignment in the
IND and FHG classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

14}
13
12¢f
11t
wl0)
[=} o]
=]]
~ o
9l [}
b A IND
#
; :
o
o 8r £
(])
; g FPHG
b o]
[+ 7 3]
©
[-
= 1)
6t +
=
-
9 H
5 (1]
o]
s
&t T
3t /
2¢
l.
0 4 + t 4

2 3 4 5 6
Programming Assignments

Figure 5, Time series analysis of the mean number of
of runs per programming assignment in the
IND and FHG classes,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

Although the IND class has 21 students and the FHG
class has 20 students, the number of students who do not
report the efficiency measurements is fewer for each
programming assignment in the FHG class. These students
are excluded from the analysis since a measurement of
zero indicates an amount of zerc time spent writing a
prrogram, working on the progrem at the terminal or that
there are no runs completed on the program. The
differences between the twe classes are found to be
significant in the number of runs required for
programming assignment #3 (FHGCIND) and in the terminal
time spent for programming assignment #& (IND<FHE).

As the programs become more difficult both the FHE
and the IND clasces spend more time writing the programs.
However the last programming assignment, #&, reverses
that trend in both classes.

In the time series analysis of writing time,
digplayed in Figure X, the FHG class initially is
spending less writing time per assignment than the IND
class; but by the end of the experiment, the students in
the FHG class are spending more writing time per
assignment than the IND class. The time being spent by
the student in analyzing and designing an algorithm,
writing cede and debugging (writing time) appears to
increase when working within the group milieu.

This may be the result of the student being more

aware of the time spent on this writing process since it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105
iz done in groups in and outside of the class.

The second measure of programming efficency used for
this hypothesis is the time spent on the terminal by the
student for each programming assignment. Evidence
indicates that the group approach appears to have caused
increased time to be spent on the terminals as the
programe become more difficult., PRoth classes display
increases of time spent con the terminals for the third,
fourth and fifth programming assignment, and by the fifth
programming asssignment, the students in the FHG class
are spending more time at the terminals than the IND
stuaents.

The largest difference in the terminal time being
spent by the students in the IND and FHG classes is for
the sinth programming assignment. The number of students
reporting terminal time for that assignment in the IND
class is eight and each student receives a perfect grade
on the assignment. ERetter programming students may
require less terminal time than weaker programming
students.

The third measure of programming efficiency is the
average number of runs per program needed to obtain
correct cutput. The number of runs is lower for all the
programs done by the FHG class; however, only for
programming assignment #3 is this difference found to be
significant.

The instructional method employing fixed student

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

programming groups, when compared to the traditional
method, does not appear to have a differential effect on
programming efficiency. Ho, must be regarded as
defensible since the data offers insufficient evidence

against it.

Hyvpathezsis Four

Hoq: The teaching method employing fixed
heterogeneous student programming groups in combination
with lectures, when compared to the method employing
lectures and individual student prcgramhing, has no
differential effect on student attitude toward computers
and computer programming in an introductory computer
programming course as measured bys:

1. the Attitude Toward Computers and Programming
Survey given pretreatment,

2. the Attitude Toward Computers and Frogramming
Survey given posttreatment {(after the siuth programming
aseignment).

An analysis by t-test statistics is done for each
statement on the guestionnaire. The results of this

analysis appear in Table 8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 8

107

Fretreatment and Posttreatment Mean Item Response on the
Attitude Toward Computers and Computer Frogramming Survey
in Comparison 1

Item

P

i

Ul

~l

16

17

18

Note.

Pretreatment

IND FHGE
4.8750 4.4400 %
4. 24609 4. 8400
4, 3000 4, 3200
4, SO00 4,1867
J.7917 . 8800
4, 2000 4, 4000
. 9068 . 8000
4., 6280 4., 0400
4. 1647 . 8400
X.58833 3.4800
84,2917 4, 0800
4, 08535 4, 0400
4. 1250 4, 2400
F.T7917 3. 7200
4,0417 4, 1200
F.3478 F. 2800
Fa 6260 . 7600
F.T7917 .8800

attitude toward the item.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fosttreatment

IND FHG
4.35455 4,55540
J.727F RIS |
4.14%4 4,789
I.6818 RT3

F. 0909

2.6190
F.7273%0

3.6364

4,.00000

T, 94440

S.61110 %

« 27780%
4, 53335e
. 8ag°e

4,27780%

A score of § indicates a most favorable

® Indicates an increase of item mean response
posttreatment compared to pretreatment in same class.
¥p < .05

lo8

The Cronbach & , a measure of reliability, is used
to determine the internal consistency of this instrument
by correlating each item on the instrument with every
other item. The Cronbach oC for the Attitude Toward
Computers and Frogramming Suwrvey is 0.84789, indicating
high internal consistency. Consequently an analysis of
the total response average on the Attitude Toward
Computers and Programming Survey conducted in the IND and
FHE classes pretreatment and posttreatment is presented
in Table 2. Figwe & displays the same results

graphically.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table

109

Mean and Standard Deviation of Fretreatment and
Fosttreatment Student Total Response Average on the
Attitude Toward Computers and Computer Frogramming Survey

in Comparison 1

Survey

Source

Fretreatment

Fosttreatment

*E L 0S8

IND
M 8D
4.0764 . TE2
T.7247 446

FHG
M Sh
Z.P978 . 487
4.0401 345K

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

5,
[}
o
]
o -~\‘”h;:: FHG
=Y : .
] IND
1]
s
o
2 3t
w
)
~
i
©
°
] 2t
=1
]
]
=
l.
0 - —L.
Pretreatment Posttreatment

Figure 6, Pretreatment and posttreatment means of student
total response average on the Attitude Toward
Computers and Computer Programming Survey in
the IND and FHG classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111

The results of comparing the pretreatment responses
on the 18 statements of the Attitude Toward Computers and
Frogramming Survey produces one statement that elicits a
significant difference in responses from the two classes.
The IND class scores a more favorable response to the
statement: Computer programming is an important skill to
have for future job opportunities.

In comparing the posttreatment responses of the two
classes to the 18 statements of the Attitude Toward
Computers and Programming Survey, five statements are
found to produce significant differences in responses.

" On each of these statements the FHE class scores a more
favorable response than the IND class. The five
statements are:

I try to aveid working on my computer programs until
the last minute. They are my least favorite assignments.
I always look forward to working on my computer

programming assignments.,

I hesitate working with computers because they are
strange and anxiety-proveoking.

Computers are fascinating and exciting to work with.

I view programming as a stimulating and challenging
acitivity.

In addition to the first four statements listed
above the foliowing statements receive more favorable
response sceres in the FHG class. in the posttreatment

survey, compared to the responses given by the class in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

the pretreatment survey:

Computer programming is an important skill teo have
foar future job opportunities.

I become frightened and panicky at the thought of
having to write a computer program.

Computer programming seems to be a fairly useless
skill.

Computers are eutremely accurate, efficient and
reliable.

Computers are important for the efficient operation
of large and small businesses.

I find that discevering solutions to programming
problems is a logical process.

Every college student should be reguired to take a
course in computer programming.

One cannot use what is taught in this course outside
of a programming environment.

In the pretreatment survey the IND class responds
more favorably ta 11 out of the 18 statements than does
the FHG class. In the posttreatment survey the FHG class
responds mare favorably to 17 out of 18 statements than
does the IND class.

In comparing the total response average of bhoth
classes, a significant difference is noted in the
posttreatment results in which the FHG class achieves a
more positive response score than does the IND class.

The data provide sufficient support for a rejection of Ho,,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

Comparison 2

Comparison 2 contrasts the programming achievements
and attitudes of students receiving instruction in the
traditional mode of lecture and individual programming
(IND) to those of students receiving experimental
instruction employing lectwe and variant heterogeneous

student programming groups (RHGE) .

Hypothesis Five

Hog : The teaching metheod employing changing
heterogeneous student programming groups in combination
with lecture, when compared to the method emploving
lecture and individual programming, has no differential
effect on student programming proficiency in an
introductory computer programming course as measured by:

1. the grades on programming assignments #3 (GBFA3),
#4 (GFA4) ., #5 (GFAD), #6 (GBFA&),

2. the midterm examination score (MIDTERM),

3. the final examination score {(FINAL).

Students who do not hand in a programming assignment
receive a score of zero. PFaximum score on each
programming assignment is ten. The midterm and final
examination score range is from zero to one hundred.

Analysis of data by t-test statistics is presented

in Table 10. Figure 7 displays a time series analysis of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114
the average grades on the programming assignments for the

IND and RHG classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Mean and

Measure

GFAZ
GFA4
GFAS
GFAL
Midterm

Final

¥p < W03

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 10

115

Standard Deviation of Frogramming Froficiency

Measures Used in Comparison 2

M
& SOO0
& BO00
5. 5887

S.0619
80,3333

64,7619

IND

sD

F. 142

4.177

4,629

4,320

Q.707

22.816

|

7.0421

6.726%

73,7368

6l.2632

2

RHG

116

10}
v
o O9Of
]
o
5
8t g
Fi]
g k)
o
g 4 R
o Cf B RHG
o C
)]
w)
< o6} E
o [}
5 Y
E S5 & IND
& -
H i
o
o 4t g
H &
i ol
o 3]
o 3 2,
3]
= &
2F
1l
0 -y v v T T T
1l 2 3 4 5 6

Programming Assignments

Figure 7, Time series analysis of the mean programming
assignment grades in the IND and RHG classes,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

All the average programming assignment grades
attained by the RHG class are'higher than those earned by
the IND class: however, only the differences in the class
grades for programming assignments #3 and #4 are found to
bhe significant.

The graphs of the average class programming
assignment grades, displayed in Figure 7 appear to be
parallel. Consideration must be given te the facé that
the students who do not hand in the assignments receive a
grade of zero and are included in the analysis.

The ability of the RHGE class to earn higher grades
on the programming assignments, done in groups, is not
reflected in the scores achieved by the class on the
midterm and final examinations, taken individually.

The lack of any significant differences in the
midterm and final examination scores in the IND and RHG
claszses indicates that any differences that are observed
must be considered to be the results of the group
supporting its members in the writing of programs rather
than in either teaching method producing differential
programming skills. Hog must be regarded as defensible

since the data offer insufficient evidence to reject it.

Hypothesiz Six

HOg: The teaching method employing variant
heterogenecus student programming groups in combination

with lectuwres, when compared to the method empleoying

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

lecture and individual programming, has no differential
effect on student programming perseverance in an
introductory programming course as measured by:

1. the number of students completing the programming
assignments on time,

2. the number of students completing the programming
assignments late,

Z. the number of students not completing the
programming assignments.

Table 11 presents the numbers of students in the IND
and RHG clases in each category for each assignment.

Table 12 presents the means and standard deviations
of the programming perseverance measuwres for the classes
in Comparison 2. Significant results of analysis by

t-test statistics are noted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Number of Students in Comparison

Table 11

119

2

{A) Completing the Frogramming Assignment on Time
(B) Completing the Frogramming Assignment Late
{C) Not Completing the Frogramming Assignment

IND
Programming Category
Assl gnment A E
#1 i8 2
#2 22 O
= 14 4
#4 = =
12 i
#& 9 G

C

]

o

N

RHG
Category
A K
17 2
17 W
ig i

14 2
14 1
14 =

C

b3

]

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

Table 12

Mean and Standard Deviation of FProgramming Perseverance
Measures Used in Comparison 2

IND RHG
Measures M sD M =)
Number of programming
assignments
completed on time 2.2381 1.480 F.2832 1. 195%%

Number of programming
assignments
completed late « OOHOT 856 . 2684 . 7Th1

Number of programming

assignments
not completed 1.0982 1.578 . 2084 L THLX

¥Kp £ .05
¥p €. 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

The assignments #3, #4, #5 and #6 are done in
variant student programming groups in the RHG class. The
number of students completing the first programming
assignment done within the group is 19 and this number
decreases slightly during the term. The number of
students completing the sixth programming assignment is
fouwrteen. Fifteen students, who are programming
individually in the IND cléss, complete the third
programming assignment an this number decreases
substanially so that only nine students complete the
sixth programmin assignment on time.

The student count in the IND class is initially Z5
and only 21 students finish the course. The RHE class
begins and ends the semester with a student count of 19.

A student who does not keep pace with the work in
the course {as evidenced by failure to complete
assignments!) maybe considered as not continuing, much in
the same manner as a student who drops the course.

The retention of all the students in the RHG class
and the significantly higher student program completion

mean and lower student failuwe to complete the program

mean support the rejection of Hog.

Hypothesis Seven

Ho,: The teaching method employing variant
heterogeneous student programming groups in combination

with lectuwres, when compared to the method employing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122
lecture and individual programming, has no'differential
effect on student programming efficiency in an
introductory computer programming course as measuwred by:

1. the time spent by the student in designing.
coding and debugging each programming assignment
(reported by the student., listed as writing time and
measured in hours)g;

2. the time spent by the student at the computer
terminal for each programming assignment (recorded by the
computer, listed as terminal time, displayed at logout,
measwred in hours);

3. the number of runs required by the student for
each programming assignment (recorded by computer., listed
as number of runs and displayed as the file generation
numbher) .

Students who do not hand in the above data for a
program are not included in the analysis for that
programming assignment.

Table 13 presents the results of analyesis of the

data by t-test statistics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

Table 13

Mean and Standard Deviation of Programming Efficiency
Measures Used in Comparison 2

IND RHE
Measure M sD M sD
Frogramming
Assignment #3
Writing time 1.9645 . 981 2.8444 2,520
Terminal time 2. 01584 . 884 2.0647 1.521
Number of runs 7.3571 4,181 b.6111 b, 204
Frogyramming
Assignment #4
Writing time 2.1917 » 956 2. 7000 2,349
Terminal time 2.6182 1,582 2.1812 . 249
Number of runs 10,0000 6.841 11,0425 7750
Frogramming
Assignment #S
Writing time 2.86467 1.224 2.9647% 1.5899
Terminal time 2. 7000 2.179 F.16473 ZJ0E3
Number of runs 12.4444 11,226 g, 5000 6. P59
Frogramming
Assignment #4
Writing time 2. 8375 1,144 2.45F3 203
Terminal time 2. 1000 « 856 2.4250 i.218
Number of runs 8. 6250 4., 03% 2. 04625 7. 7EE

Note. Writing time and Terminal time are measured in
hours.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

Although the IND class has 21 students and the RHGE
class has 19 students, the numbers of students who do not
report the efficiency measuwrements are fewer for each of
the programming assignments in the RHG class. The
studenté who do not submit & summary report are
eliminated from the analysis far that assignment. Since
those students who are reporting data are the better
students in the IND class, the efficiency measurements
for that class are lower (i.e., better) than they would
be if all the students in the class complete the
assignments and report the required data.

In addition the students in the programming groups
report spending more time writing and analyzing programs
but this may be the result of being more aware of time
being spent in these activities since they are done in
class. The majority of the students in the RHG class
work during the weekdays and are not available to meet
outside of class and so the writing time measurement
psssentially reflects the time spent in class, in groups,
and the time spent at home, working alone.

The second messure of programming efficiency used is
the average time spent on the terminal by the student for
each programming assignment. The data reported indicates
no significant differences in the measures achieved by
both classes. 8ince the number of students reporting
data is smaller in the IND class than in the RHG class,

the IND class aver age appears to be lower than it might

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

have been if more students had completed the assignments
or had reported the summary data requested.

The third measure of programming efficiency used in
the study is the average number of runs per programming
assignment needed to cobtain correct ocutput. Again ne
significant difference is obtained between the two clases
on this measurement. The class average is affected by
any extreme score reparted by a student. UOne student in
the IND class records S5 runs for programming assignment
#5 and the class average is strongly influenced by this
value since only nine students report any results.

None of the programming efficiency measurements
obtained attain statistical significance and time series
analyses of these measurements produce no recognizable
trends. Ho, is tenable since the data offer insufficient

evidence agasinst it.

Hvpothezis Eight

ng: The teaching methed emploving variant
heterogeneous student programming groupe in combination
with lectures, when compared to the method employing
lectuwres and individual programming, has no differential
effect on student attitude toward computers and
programming as measured by:

1. the Attitude Toward Computers and Frogramming
Survey given pretreatment,

2. the Attitude Toward Computers and Frogramming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126
Survey given posttreatment (after the sixth programming
assignment).

Analysis of each statement on the swvey, by t-test
statistics, is presented in Table 14.

The Cronbach o of 0.8478%9, indicating high internal
consistency in the measwring instrument, permits analysis
of the average student total response score. The
analysis of the average total student response is

presented in Table 1% and in Figure 8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

Table 14

Fretreatment and Fosttreatment Mean Item Response on the
Attitude Toward Computers and Computer Programming Survey
in Comparison 2

Pretreatment Posttreatment
Item IND RHEG IND RHG
1 4.8750 4.6842 4. 5455 4.,7778@
2 4.2609 4.3158 37273 4,38890%
3 4. 5000 4.5556 4.16%4 4.88890
4 4. 5000 4,3158 3.4818 4,35296x%
= 3.7917 3.9474 3. 8909 4, 00000
& 4. 5000 4,46316 4,4091 4, 8OO0
7 3. P565 4. Q000 3.7273 3. 56882
a 4, 6250 4.3684 4.1818 4, 555460
9 4. 16467 4.0516 Z.5909 . 8689
10 . 58%3 .8947 2.9091 T.7222 %
11 4.2917 4. 1057 4.13464 4, 16470
iz 4. 0833 4,.2632 ZL727E 4,2222
i3 4, 1250 4.2105 z,.8182 4,222260
14 T3.7917 4. 0824 Z.5485 RN
15 4.0417 4.2105 . 4545 4,3B890%
16 3.35478 3.8789 2.61%0 3.4444 X%
17 T 6250 3.5789 F.7273 T.T72220
18 37917 3.9474 3. 6T64 3. 5556

Note. A score aof 5 indicates a most favorable

attitude toward the item.
elndicates an increase of item mean response

posttreatment compared to pretreatment in same class.
g LOF

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

128

Table 1O

Mean and Standard Deviation of Fretreatment and
Fosttreatment Student Total Response Average on the
Attitude Toward Computers and Computer Frogramming Survey

in Comparison 2

Survey IND RHG

Source i} Qb Y &aD

Fretreatment 4,07464 . 4, 1374 « 340

Fosttreatment 2.7247 444 4,.0154 L AT%
kp <. 05

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

at ‘\a‘ RHG
IND

Mean Total Response Average

0 - —

Pretreatment Posttreatment

Figure 8., Pretreatment and posttreatment means of student
total response average on the Attitude Toward
Computers and Computer Programming Survey
in the IND and RHG classes,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

The results of comparing the pretreatment responses
to the 18 statements on the Attitude Toward Computers and
Frogramming Survey produces no statements eliciting
significant differences in response from the IND and RHE
classes. In comparing the posttreatment responses of the
two classes, five statements are found to produce
eignificant differences in responses and in each of these
statements the RHG class scores more favorably than the
IND class. The five statements are:

I try to avoid working on my computer programs until
the last minute. They are my least favorable
assignments.

Computers are fascinating and exciting to work with.

I view programming as a stimulating and challenging
activity.

I always look forward te working on my computer
programming assignments.

I find that trving to get my program to run on the
computer is a frustrating ordeal.

In addition teo the first three statements listed
above, the following statements receive more positive
response scores in the RHG class in the posttreatment
survey compared to the reponses given by the that class
in the pretreatment survevy:

Conputer pregramming is an important skill te have
for future job opportunities.

Computers are not very useful because they are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

always breaking down or making mistakes.

I become frightened and panicky at the thought of
having to write & computer program.

Computer pragramming seems to be a fairly useless
skill.

Computers are important for the efficient cperation
of large and small bhusinesses.

I find that discovering scolutions to programming
probhlems is a logical process.

It seems to me that a programming class motivates
studentes to cheat~—they copy other people’s programs and
hand them in.

The IND class scores a more favorable reponse on one
out of the 18 statements on the posttreatment survey
compared to the responses given by the class on the
pretreatment survey. That statement is: It seems to me
that a programming class motivates students to
cheat-—they copy other peocple’s programs and hand them
ir.

In the pretreatment swvey the INMD class responds
more favorably to & of the 18 statements than does the
FHG class. In the posttreatment survey, the IND class
again responds more favorably to 6 of the 18 statements
but only one of these statements in the posttreatment
survey is the same as the ones the IND class indicates
more favorable response to in the pretreatment survey.

That statement is listed above and is the same statement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132
that receives more favorable response in the IND class
pasttreatment than pretreatment.

In comparing the total response average of the
classes, a significant difference is noted in the
posttreatment results. The class experiencing group
programming has a significantly more favorable attitude
toward computers and computer programming than the class
receiving instruction in the traditional mode. The data

provide sufficient support for a rejection of Hog.

Comparison =

Comparison 3 contrasts the programming achievements
and attitudes of students in the classes receiving
instruction in the two different experimental modes (FHE

and RHG? .

Hypothesis Nine

qu= The teaching method employing +ixed
heterogeneous student programming groups in combination
with lectures, when compared to the method of employing
changing hetereogeneous student programming groups in
combination with lectures, has no differential effect on
programming proficiency in an introductory computer
programming couwrse as measured by:

1. the grades on programming assignments #3 (GFAZ).
#4 (GFAR4), #S (GFAD), #&6 (GFA&),

2. the midterm esamination score (MIDTERM),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

3. the final examination score (FINAL).

Students who do not hand in & programming assignment
receive a grade of zero. Grades on the programming
assignments range from zerao to ten. Grades on the
midterm and final examinations range from zero to one
hundred.

The means and standard deviations of the programming

proficiency measures are presented in Table 16.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 1é

134

Mean and Standard Deviation of Frogramming Proficiency
Measures Used in Comparison I

Measure

GFAZ

BFAS

GFAS

GFA&

Midterm

Final

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8. 4500
8, 2300
7.2130

7 6300

77 . 8000

67 . 2000

FHG

sD

2. 620

2.818

. 884

Sa 777

14,322

F1.007

M

8.8842

8.7632

7.0421

&1. 2638

RHG

135

Analysis by t-test statistics reveals no significant
differences in the average programming grades, midterm or
final examination scores in the FHE and RHE classes.
Although the average grades for programming assignments

3 and #4 are higher for the RHG class, the FHGE class
scores higher average grades for programming assignments
#5 and #4 and on bkoth the midterm and final examinations.

Flausible explanations for the cobserved differences
may lie in the inability of the RHG students, who are
working full-time, to meet the increased time
requirements of the course as the term progresses and the
retention of all the students {including the weak
students) in the RHG class.

SGince no significant differences are found on the
measures of programming proficiency for the students in
the classes employing the fired or the variant

programming group, Hog must be considered defensible.

Hypothesis Ten

HO, : The teaching method employing fixed
heterogeneous student programming groups in combination
with lectures, when compared to the metheod of emplovying
changing heterocogenecus student programming groups in
combination with lectures, has no differential effect on
student programming perseverance in an introductéry
computer programming course as measwred by:

1. the number of students completing the programming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136
aszignment on time,
2. the number of students completing the programming

assignment late,

Z. the number of students not completing the
programming assignment.

Table 17 presents the numbers of students in the FHE
and RHG clases in each category for each assignment.

The means and standard deviations of the programming

perseverance measures for the classes in Comparison I are

prezsented in Table 18.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Firogramming

Assignment

#1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Number of Students in Comparison 3

(A) Completing the Frogramming Assignment on Time
{R) Completing the Frogramming Assignment Late
(C) Not Completing the Frogramming Assignment

FHE
Category
A =

24 O
24 i
17 2
15 4
15 =
15 3

Table 17

N

L)

8 |

RHG
Category
A E
17 2
17 O
18 1
16 2
14 1

14 3

P

O

8

137

138

Table 18

Mean and Standard Deviation of Frogramming Perseverance
Measures Used in Comparison 3

FHG RHG
Measures ™ sh M SD
Number of programming

assignments
campleted on time I OO0 1.605 X 2632 1.195

Number of programming
assignments
completed late « SO00 1.100 . 5684 . 761

Number of programming

assignments
not completed « G500 1.144 L3684 - 761

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13¢

The measure of student programming perseverance is
determined by the number 5% programming assignments
completed by the students in the class. One hundred
percent of the students in the FHG class complete
prmgrammiﬁg assignment #1 on time. This percentage
decreases for the following assignments and reaches its
lowest level of 75% for programming assignment #45. One
hundred percent of the students in the RHG class complete
the first programming assignment and this percentage also
decreases as the term progresses and reaches its lowest
level of 734 on programming assignment #b.

The evidence demonstrates no di&férence in the
programming perseverance promoted by either group

programming instructional method in an intreoductory level

programming course. He,e is regarded as defensible.

Hypothesis Eleven

Hoy, = The teaching methed employing fixed
heterogeneocus student programming groups in cembination
with lectuwres, when compared to the method emploving
changing heterogenecus student programming groups in
combination with lectuwres, has no differential effect on
student programming efficiency in an introductory
computer programming course as measured bys

i. the time spent by the student in designing,
coding and debugging the programming assignment (reported

by the student, listed as writing time and measured in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140
hours) s
2. the time spent by the student at the computer
terminal for the programming assignment (recorded by the
computer, listed as terminal time, displayed at logout

and measured in hours);

. the number of runs required by the student for
the programming assignment {(recorded by the computer,
listed as number of runs and displaved as the file
generation number).

Students who do not hand in the above data for a
program are not included in the analysis for that
programming assignment. Table 19 presents the means and

standard deviations of the programming efficiency

measwres for students in Comparison 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

Table 19

Meanrn and Standard Deviation of Programming Efficiency
Meazsures Used in Comparison 3

FHG RHG
Measure i sD ™ &h
Frogramming
Assignment #3
Writing time 1.5062 BT70 2.8444 2. 520
Terminal time 1.6437 514 2.0647 1.521
Number of runs 4, 0000 4,775 b.6111 6. 204
Frogramming
Assignment #4
W-iting time 1.2000 1.244 2.7000 2.349
Terminal time 2. 3957 - 220 2.1812 . 949
Number of runs 7.1878 7. 250 11.0625 7. 750
FProgramming
Assignment #5
W-iting time T 2000 1.461 2.9643F 1.599
Terminal time 2.8733 1.242 T 1643 2.02%
Number of runs P . OO0 9.448 8, 5000 4. 9E9
Frogramming
Assignment #6&
Writing time 2. 7000 1.935 2,4553 1.203
Terminal time T, 0200 1.168 2.4250 1,218
Number of runs 7 4000 4.485 9. 0625 T.TEE

Note., Writing time and Terminal time are measured in
houwrs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

The first of three measures used to determine the
student programming efficiency is the writing time
recorded by the student for each programming assignment.
The only writing time to obtain statistically significant
difference between the FHB class and the RHG class is the
average writing time for the third programming
assignment. Analysis of the data using time series
digplays no recognizable trend.

The second measure of student programming efficiency
is the amount of terminal time recorded for each
completed programming assignment. Analysis of the data
chtained from the students in the FHGE and the RHG classes
does not find any significant differences.

The third aspect of student programming efficiency
used as a measurement is the number of runs required by
the student to obtain correct pregram output. This is
recarded by the computer for each assignment. Again
analysis of the data from the classes deoes not cbtain any
significant differences.

The exuperimental instruction method employing fixed
heterpgenecus student programming groups, when compared
to the experimental instruction method employing variant
heteragenecus student programming groups, does not appear
to produce any differential effects as determined byhe
three measures of student programming efficiency used in

this study. Therefore Ho, is tenable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

Hypothesis Twelve

Ho,, * The teaching method employing fixed
heterogeneocus student programming groups in combination
with lectures, when compared to the method of employing
changing heterogenecus student programming groups in
combination with lectures, hes no differential effect on
student attitude toward computers and programming as
measwred by:

1. the Attitude Toward Computers and Froegramming
Survey given pretreatment,

2. the Attitude Toward Computers and Frogramming
Survey given posttreatment (after the sixth programming
assignment).

Table 20.presents a descriptive analysis of the
average pretreatment and posttreatment item response .

Table 21 and Figure 9 compare the average total
student response to the survey, pretreatment and

posttreatment, in the FHG and RHG classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

Table 20

Fretreatment and Posttreatment Mean Item Response on the
Attitude Toward Computers and Computer Programming Survey

in Comparison 3

Fretreatment Posttreatment
Item FHG RHG FHG RHG
1 4., 4400 4.46842 4,55546¢ 4.7778@
2 4.4400 4.3158 » ZX3F 4.3889@
= 4., 5200 4, 5554 4.7889 4.088960
4 4., 1667 4.,3%158 4.333% @ 4,3529@
S . 8800 R.9474 4.00008 4,0000@
& 4., 4000 4.6%16 4.1667 4, 5000
7 3. 8000 4, 0000 3. 55546 =.5882
a8 4, Q400 4.,3684 4,788960 4,.5550 @
9 3.8400 4,.0516 Z.24440 Z.8889
10 F 5. 4800 Z.8947 Z.61110 3.7222
11 4. 0BOO 4, 1053 4, A3 4,1464670@
12 4., Q800 4,2632 4,27760 4.2222
13 4, 2400 4.,2105 4,3337@ 4,2222¢@
14 S TZ200 4.,05246 %.888%0 RPN IR
15 4, 1200 4,2105 4,2770@ 4,768890
16 . 2800 3.5789 F2FES 3.4444
17 T 7600 Z.5789 i ¥t 1 J. 72220
18 .8800 2.9474 J.94120 3. 5556

Note. A score of S indicates a most favorable

attitude toward the item.
® Indicates an increase of item mean response
posttreatment compared to pretreatment in same class.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

Table 21

Mean and Standard Deviation of Pretreatment and
Fosttreatment Student Total Response Average on the

Attitude Toward Computers and Computer FProgramming Survey
in Comparison I

Survey FHG RHE

Source M SD M ap .
Fretreatment T.9978 - 487 4,1374 « 440
Posttreatment 4,0401 . 245 4,0154 . 8459

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

146

5L
1)
o
]
E 4 N P "y FHG
p-
- RHG
L)
O]
]
o
n 3
[
~
—
o
o3
[o]
[2+
o
[
@
=
1t
0 —t— —
Pretreatment Posttreatment

Figure 9, Pretreatment and posttreatment means of student
total response average on the Attitude Toward
Computers and Computer Programming Survey in
the FHG and RHG classes,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

Analysis of the responses in the FHG and RHG classes
on the pretreament Attitude Toward Computers and Computer
Frogramming Survey finds no statistically significant
differences. The RHE class scores slightly more
favorable responses to 14 statements on the survey.

Analysis of the responses in the FHE and RHGE clascses
on the posttreatment Attitude Toward Computers and
Computer Frogramming Suwrvey also finds no statistically
significant differences. The RHG class scores slightly
more favorable responses to 11 statements on the survey.

The RHG class responds more favorably to nine
statements on the posttreatment survey compared to the
class responses on the pretreatment swvey, and the FHG
class responds more favorably to 12 statements on the
posttreatment swrvey compared to the class responses on
the pretreatment suwvey. Seven of the statements
receiving more favorable class response postreatmentwise
are the same for both classes.

Compariscn of the total response average for the
pretreatment and postreatment surveys reveals no
significant differences for the FHG and the RHG classes.

The current investigation fails to detect any
significant differences in student attitude in the
classes employing either student programming group
structure in an introductory programming course and so Ho,

is tenable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. . 148
The Team Froject and Student Reactions to the Couwrse

Frogramming assignment #7 is’'a team project in all
the classes. It is assigned and completed after the
experiment and is used as an aid in the assessment of the
data obtained for Comparisons 1, 2 and 3.

Table 22 presents the average student grade received
on programming assignment #7 for each class and the

percentage of students in each class completing the

project.,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

Table 22

Mean and Standard Deviation of Student Grade Received on
Team Project and Percentage of Students Completing the

Class M

IND 6.0Q474
FHG 8. 3800
RHEG &.789%

Assignment
8D Fercentage
=.840 76.2
Z. 617 85.0
3.119 82.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

Frior to the final examination, the students in the
three classes are ashked to evaluate the course. 0One
method used requested the students to list the most
pasitive aspect and the most negative aspect of the
couwrse. The second method used had the students select
one word from each of eight opposite word-pairs to
describe the course.

Listed bhelow are some of the student answers teo the
request to name the most pesitive and the most negative
aspects of the course. The students™ responses are

presented by class.

The Most Fozitive Aspect of the Course

IND Class,

"Working in groups.”
"Nothing. "

"The group project in which we worked together.”
"Good experience working with a group. Frogram
{programming assignment #7) . . . loocked more difficult

than it actuslly was.,"

"The preoject was more interesting because it was
shared and more fun.”

"I enjoyed working with Dave and Diane. We should

have had time to do more programs in groups.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

FHE Class.

"Group work."

"I liked working in the group and really learned
more that way."

"Walkthroughs with groups are great if everyone has
his work done and shows up to help out."

"Everyone in the group was willing to help one
another and I find that that is really good in a class
like this."

"It was géod to get a feeling of working with other
people and seeing how they approach problems.”

"Last progrram was interesting with total group
invalved. Each person participated in order to develop
the program and allowed for group discussion in aiming at
the final run.”

RHG Class.

"Met very helpful and highly motivated people. It
made me feel I could do a little bit of programming.”

"To see same problem seolved in different ways."

"I felt helping others out with their problems with
their programs was both challenging and a learning
yperience."

"Working with others from whom I learned a lot.”

"Working with a group to seclve a preblem.”

"Frogramming Assignment #7 was the most interesting

of all . . . fun to work in & group and soclve pfoblems

collectively. "

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

Most Neqative Aspect of the Course

IND Class,

"Getting on the terminals.”

"It's a pain! Not enough time! Hard to get people
together! "

"Group did not work out . . .« too much time waiting
for people, trying to meet, etc. 0One member was
unreliable and unresponsive to phone calls.

"Group project because only one other person in my
group was willing to work.”

"Too much work in too little time."

"Falling behind.”

"It actually took me 55 runs to get assignment #5 to
wark properly.”

"It would have been a lot better if the rest of my
group knew that this was supposed teo be a “group’
project!t !

FHG Class,

"Too much information in too little time."

"The group idea did not work."

"Tryving to get the group together outside of class
was difficult."

"*Not having other group members® work prepared on
time. This makes the group situation fairly useless.”

RHG Class.

"Course moves very fastj; not encugh time.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

"Reing graded as one for group performance.”

"The group idea."

"Group programming with a poor group--a very
frustrating exuperience. After a group change, however,
it was rewarding."

"Having someone else’s program reflect my
grade~—wnrking with a group that was not cooperative.
When all three worked together it was beneficial, but if
one did not do the work it was frustrating for the
pthers. Also being a commuter school, it was hard to get
tagether outside of class.”

"The frustration of being dependent on others who
did not have the same enthusiasm as I had."

"The group idea—1 feel that each person should do
his or her own work. When grades are concerned, it is
unfair to penalize one person for another peron’s
mistakes. In some instances, group memhere gave a copy
of their program to a member of the group who couldn’t deo
the program. This person copied the others” program and
handed it in as his own. If each person is responsible
for his/her and only his/her own work, I feel that it

would be a much more enjovable cowse."

Selecting From Word-Fair Descriptions
Table 27 presents the opposite word-pairs that are
offered to the student and the number of students in each

class who select each choice.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table

T

o~

-
R

154

Student Selections From Word—-Pair Descriptions for the
Course Evaluation

Word-Fair

Description

Easy/hard
Enjovable/unenjovable
Requires skill/requires luck
Relaving/frustrating
Fleasing/unsettling

Learned much/learned little
Simpleschallenging

Waste of timesnot enough time

Nete.

Only those students who

IND

4711

1771

1670

RYS W

15/

P

A

[ars
D]
b

!

RIS

/18

Class

FHG

4/9
9/4

1671

1716

1715

RHG

/11

1671

1670

7/8

1472

1671

1716

Qr17

respond are counted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

The assessment of student reactions to the course by
the selection from oppeosite word-pairs and the listing by
the student of the most positive and negative course
aspect produces similar results in the IND, FHG and RHG
classes. The majority of students in each the three
classes find the course to be hard, enjoyable, requiring
skill, frustrating (a larger majority in the IND class),
pleazing and challenging. Students feel that they learn
much, but, that there is not enough time to cover all the
material in sufficient detail.

Although the team project is the first and the only
exposure the students in the IND class have to a group
programming activity, all three classes refect upon the
group programmming experience when listing the most
positive or the most negetive aspect of the course. The
group becomes an interesting, rewarding, learning
exvperience when all the members in the group participste,
and a frustruating waste of time when the members are
uncooperative.

The average student grade on the team project is the
highest in the RHG class, in which 8%.5% of the students
complete the assignment. Again, students who do not
complete the assignment are given a grade of zero and are
included in the analysis. This may inflat the grade
difference observed between the classes. When the
results are compared on the basis of only those students

who complete the team project., the grade differential

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

between the classes is reduced.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

CHAPTER VI

CONCLUSION

Summary

Computer programming is no longer a mystericus art
practiced by a very few. Hany countries are rapidly
converging to a totally computerized society, making
computer education one of the most critical areas of
concern. Campuses across the nation are offering. and
many are requiring, students to take introdﬁctory courses
in programming languages. Computer literacy is viewed as
& necessary tool for the graduate of today.

Students enter introductory programming couwses with
a variety of academic backgrounds, levels of maturity,
motivations and needs. They may be contemplating a
computer science major, fulfilling a requirement for
another major, or seeking self-enlightenment. The
problem of how to teach to such a wide awdience of
students has become a most important concern of computer
science education.

The purpose of this study is to investigate the
effects of instructional methods employing group
programming on student programming skills and student

attitude in an introductory level computer programming

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

course. Although computer science instructors are
employing many innovative methods in introductory
computer pragramming couwrses, none of the methods appear
to document substanially the consistent improvement of
these students cognitively or affectively. Consequently
the traditional pedagogical method, combining lecture
with individual programming, continues to have widespread
USE .

Claiming thét the traditional instructional method
practiced in introductory level courses, fosters
frustration and discouragement, computer psychelogists
adveocate the use of student programming groups. Students
in the group work together to analyze and design
solutions to programming assignments and the group
setting offers student members the opportunity to see
other coded solutions and have theirs reviewed by group
members for error detection.

It is expected that these activities reduce the tine
reguirement and frustration element asscciated with
introductory level programming courses that result in a
high percentage of the students not completing the
course; and, increase the programming skill and promote
positive attitudes toward computers for the student.

Sncio-psychologists have found that a
well—~functioning, cohesive group has major implications
for cognitive stimulation and attitude influence when the

individual wants to belong to the group and perceives

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

self as a member of the group. Furthermore, attitude
changes, resulting from group membership, have been
linked to changes in behavior and it is claimed that the
development of a positive attitude toward a subject can
result in increased cognitive achievement and in
pursuance of further study in the subject.

Research on all levels of education find the group
to be a powerful tool in the problem solving situation.
In cooperative learning, students share information,
generate alternate ideas and sharpen their inference
through discussion., EResides increasing confidence and
self-esteem by eliminating the detrimental effects of
competition {i.e., anxiety, indifference, resentment),
groups have been found to offer support to the student,
often resulting in increased learning and a more positive
attitude toward the subject.

This study is designed to examine two experimental
instructional methods that combine lectures with student
programming groups. One method combines lectures with
fived heterogeneocus student programming groups and the
other combines lectures with variant heterogeneous
student programming groups. The investigation is
organized according to three comparisons:

Comparison 1 examines the programming skills,
defined as programming proficiency, programming
perseverance and programming efficiency, and student

attitudes in a class receiving instruction in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

traditional method as they compare to those of students
in a class receiving instruction in the experimental
method employing fixed hetercgeneous programming groups.

Comparison 2 examines the programming skills and
attitudes of students in a class receiving instruction in
the traditional method compared to those of students in a
class receiving instruction in the experimental method
employing variant hetercgeneous programming groups.

Comparison 7 examines the programming skills and
attitudes of the students in the classes receiving
instruction in the two experimental modes.

The study is conducted at a private four—vyear,
coeducational college that services approaximately 10,000
students under a policy of open enrollment. Three
daytime sections of an introaductory level computer
programming course entitled Structured Frogramming Using
FORTRAN are selected for the investigation.

The traditional instructicnal mode {(IND) employing
individual programming and the experimental instructional
mode emploving fixed student programming groups (FHG) are
randamly assigned to the two weekday sectiansg the
experimental instructional mode employing variant student
programming groups (RHG) is assigned to the third section
that meets on Saturday.

The comparability of the students in the classes is
aszsecssed on 18 items dealing with the sex, age,

educational background, computer background, general

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

ability, pragramming ability, educational commitment and
working commitment., The IND and the FHG classes differ
significantly on the number of credits being taken during
the semester. This indicates that there are more
full-time students in the IND class than the FHG class.
The IND and the RHE classes differed significantly on
three items in the assessment: number of credits being
taken during the semester, age and workload. The IND
class appears to have a strong commitment to schoel
responsibilities and the RHG class appears to have a
strong commitment to work responsibilities outside of
schaol . (These differences are anticipated since the RHG
classe meets on the weekend; and so the main comparative
study is assigned to the two weekday classes.) The FHG
and the RHG classes differ signifcantly on the work
commitment only.

Students in the FHG and RHG classes are placed inte
three classifications {(i.e., good, average, weak) of
programming skill based upon the score they earn on the
Freliminary Programming Froficiency Test and their
previous programming experience. 0One student from each
classification is selected for each heterogeneocus
pragramming group. These groups remain fixed in the FHG
class and change after every programming assignment in
the RHG class. Some groups reduce to two members or
combine to become four—member groups when students are

absent or leave the course.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

The group programming process for the FHG and RHG
classes consists of three in-class sessions on each
programming assignment. The first session is for the
analysis of the problem and the design of an algorithmic
sclution. The second session is for critical review of
the first run of the coded version of the solution that
is written by each group member. The third session is a
discussion and review of the final run of each member’s
program for that assignment. The time spent in group
sessions in the exnperimental classes is spent by the
contral cla;s in designing, analyzing and desk-checking
{see Footnote 4) the programming assignments
individually.

All students in the study are requested to hand in a
summary sheet with each programming assignment they
complete. The summary is to include the time spent by
the student in designing, coding and debugging the
program, the time spent on the terminal, and the number
af runs required by the program to produce correct
output.., The euperiment begins with the third programming
assigrnment and ends with the sixth programming
assignment.

The first hypothesis in Comparisons 1, 2 and 3
examines student programming proficiency as measured by
the grades received on the programming assignments and
the scores earned on the midterm and final examinaticons.

-
"1

The second hypeothesis in Comparisons 1, 2 and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

examines student programming perseverance as measwed by
the number of students completing each assignment on
time, the number of students completing each assignment
late, and the number of students not completing each
programming assignment.

The third hypothesis in Comparisons 1, 2 and 3
examines student programming efficiency as measured by
the time spent by the student in designing, writing and
debugging the program, the time spent by the student on
the terminal and the number of runs reguired to obtain a
correct ocutput for each programming assignment.

The fourth hypothesis in Comparisons i, 2 and &
aexamines the student attitude toward computers and
programming as measwred by an Attitude Toward Computers
and Frogramming Survey taken pretreatment and
posttreatment.

To aid in the assessment of the data obtained in the
hyvpothezes listed above, student reactions to the course
are solicitated and & seventh programming assignment, &
team project, is required of all students. In the IND
class, students are placed in hetercgenecus teams hased
on the grades they have earned in the cowrse at that

time. The teams in the other two classes are selected as

usual .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164
Re=zults

The following results are presented in response to
the four guestions proposed for investigation in the
introductory chapter of the study.

1. Do students who receive instruction in the fixed
group (FHE) or variant group (RHE) or traditional setting
(IND) achieve a higher leveli of programming proficiency?

The students in the FHE and RHG classes perform
better on the programming assignments than do the
students in the IND class. However, the differences on
the midterm and final examinations, on which the
euperimental classes score lower than or similarly to the
cantrol class, are not found to be significant.

A plausible euplanation for this disparity may lie
in the fact that the programming group carries its
weakest member through the programming assignments in
order to raise the proficiency level of the group as a
whole. (Students programming in groups are operating
under the premise that their grades reflect the average
of the group grades.) However this support from the
group does not exist for the student during the midterm
or final examination which is taken individually.

Consideration must also be given to the support
which the weak student receives from the group that may
cause him/her to remain in the cowse for a longer period

of time than would be the case had this student been in a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

class that is not employing groups.

Hypotheses 1. 5 and 9 suggest that the level of
pragramming proficiency is comparable for students in the
three classes in the study.

2. Does the individual operating within the fixed
pragramming group or the variant programming group or
programming alone exhibit greater programming
perseverance?

The students in the FHG and RHG classes complete
more programming assignments on time than do the students
in the IND class. The programming perseverance
measurement is considered an important factor in the
evaluation of & course that has as one of its primary
objectives the production of computer—-literate students.
If a student is not completing the assignments, that
studegt is not keeping pace with the work in the course
and is, for all practical purposes, not continuing with
the couwrse.

The observed trend, in the IND class, of fewer
students completing each programming assignment as the
couwse progresses is reversed for the seventh programming
assignment, the team preoject. This may be considered
fur-ther evidence for the programming perseverance
promoted by programming within the group environment in
an introductory level course.

Hypotheses 2 and & determine the completion

differences between the ewperimental classes and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

l66

control class to be significant and find the students
programming within the group to exhibit greater
programming perseverance than students programming alone.

The students in each of the experimental classes
complete & similar number of programming assignments and
Hypothesis 10 suggests that the pngﬁamming perseverantce
of these students is comparable.

. Do students whé wor bk within the fixed group
structure or the variant group structure or alone make
more efficient use of their time {(pertinant to the
cowse) and computer facilities?

Students in the FHG and RHG classes spend more time
writing pregrams and using terminals then do students in
the IND class. The number of runs required per
assignment {for most students in the experimental classes
iz less than that required by the students in the control
class.

The greater amount of time spent writing and using
the terminals by the students in the experimental classes
appears to be the results of a higher percentage of the
students in the FHG and RHE classes reporting this data,
rather than any increase or decrease in programming
efficiency gained from the group programming experience.
The fewer runs per programming assignment that are
required by the students in the experimental classes may
be considered a result of having students review group

members® programs before the programs are presented to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

the computer.

However H;patheses I 7 and 11 are unable to
substaniate any of these differences as significant for
all the programming assignments énd the use of student
time and computer facilities by the sf&dents in the three
classes is considered to be comparable.

4. Do students who program within the fixed group or
variant group or traditiomnal environment exhibit & more
pasitive attitude toward computers and computer
programming

In the posttreatment suwrvey, the students in the FHG
and RHG classes demonstrate significantly more positive
attitudes toward computers and computer prrogramming than
do students in the IND class. The total response
averages of the experimental classes are similar.

Hypotheses 4 and 8 determine that students
programming within the group environment exhibit a more
positive attitude toward computers and computer
programming thamn students who program alone. Hypothesis
12 suggests that the attitudes of students programming
within variant group and fixed group environments are
comparable.

In summary, the investigation finds no significant
differential effects are produced by any of the methods
on measures of programming proficiency or programming
efficiency. However, in introductory cowses, in which

computer literacy is a main course objective, the more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

positive effects substantiated for measuwes of
programming perseverance and student attitude in the
classes employing student programmingvgroups, lead to the
conclusion that these instructional methods are worthy of
consideration for courses designed for student

popul ations as described in this study.

It must be noted. however, that the results of
Comparisons 1, 2 and % are derived from the responses of
a limited representation of the subject population and to
a subjective set of measwes of student programming
shkilles and attitude. Conseqguently, although the results

are promising, they may hardly be considered conclusive.

Recommendations

Based on the data obtained under the conditions of
this study., the following suggestions for further
research are made:

l. FReplication is of prime importance since any
similar findings would provide further support for the
conclusions of this study. The replication studies
should be conducted using:

a. Similar experimental format with different
samples of students from the same populationg

b. Similar experimental format with different
student populations: traditional college students,

dormitory students, graduate students, computer science

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

majors, non—computer science majors;

c. Similar edxperimental format with different
programming lanuages: FL/I, BASIC, FPASCAL; and,

d. Similar experimental format with different
methods of group formation and different group size:
self-selection, Z2-member groups, S—member groups.

2. The development or identification of accuwrate
methods to measuwre student programming proficiency would
aid in the evaluation of differences resulting when
instructional methods are compared. These may include:

a. Requirement of more or fewer written
programming assignmentssg

| b. Implementation of more individually taken
examinationss;

c. Introduction of oral guizzes on each
programming assignment;

d. Assignment of programs to be modified or
debugged; and,

e. Employment of measures of program
readability as a determinant of programming skill.

Z. A search for unobtrusive and accurate measures of
student programming efficiency would aid in the
evaluation of differenceg resulting from a comparison of
instructional methods. These may include:

a. Examination and cataloguing of student
programming ertvorsy and,

b. Determination of ability of the group as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

compared to the individual to detect different types of
errors.

4, General research into areas not considered by
this study would add to the knowledge of the effects of
student programming groups. This may include:

a. A study of group dynamics as it affects the
group process in student programming groups (i.e.,
personality factors and group member roles, different
personality combinations in student programming groups) i

b. The employment of a clinical-type tresearch
design in which the investigator becomes a programming
grroup participant in order to observe the positive and
negative featwes of social interaction in group problem
sclvings

c. The investigation of different instructional
methods as they relate to different cognitive learning
styles: &nd,

d. The identification of students who prefer to
work alone and the investigation of the detrimental
effects caused by those students on the functioning of a
programming group in a class employving the changing group
structure.

It is hoped that the observed benefits obtained in
the experimental classes employing student programming
groups will give encouragement to future teaching
experiments conducted in introductory level computer

programming classrooms. Studies of pedagogical methods

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

which maximize positive student attitude and perseverance
should be as serious a matter of concern to the
investigator as those methods that maximize conveyance of
knowl edge. This, together with the continued
publication of such research, offers promise of finding
the best pedagogical method for producing computer

literate students.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

References

ahlgren, D., Sapega, A., ¥ Warner, H. A. Seguence of
computing courses for liberal arts colleges. SIGCOSE
Bulletin, 1978, 10(1), 180-182.

Ahmed, N., % Bardos A. Frogrammers’® mass education at
Szamok. BIGCHEE Bulletin, 1976, 8(2), 435-47.

Biken, J. A self-paced first couwrse in computer
science. SIGCEE Bulletin, 1981, 13(1), 78-80.

Aleck, A, Guidance: A new dimension of creative
teaching. In C. 8kinner (Ed.), Educational
psychology. Englewood Cliffs: Frentice-Hall, 193%.

Alford, M. Hsia, F., & Fetry, F. A software
engineering approach to introductory programming
courses. SIGCSE Bulletin, 1977, _9{1), 157-1&1.

Allport, G. Attitudes. In C. Murchison (Ed.), &
handboolk of social psycholaogy. Worchester, Mass.:
Clark University Press, 1938.

Arnow, B. Realism in the classroom——a team approach.
SIGCSE Euwlletin, 1981, 132, S-11.

Aronson, E. The jigsaw classroom. Reverly Hills,
Calif.: GSage, 1978.

Artzt, A. Student teams in mathematics class. The
Mathematics Teachetr, 1979, 72, S05-508.

Bain, R. An attitude on attitude research. Aperjcan
Journal of Sociology. 1928, 73, 940-957.

Baker, F. T. BSystem quality through structured
programming. AFIFS Proceedings, 1970, 3X9-3435.

Baker, F. T. Chief prograsmer team management of
production programming. IBM Systems Jowrnal, 1971,

1, S6-73.

Barnett, M. Systematic Instruction in Simple
Frogramming Gambits. GIGCSE Bulletin, 1978, 10{3),
108-112.

Basili, V. K.y & Reiter, R. W., Jr. A controlled
experiment guantitatively comparing software
development approaches. IEEE Transactions on
Software Engineering, 1981, 7{3), 299-3ZQ.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

Bell, F. Can computers really improve school
mathematics?™ The Mathematics Teacher, 1978a,

71, 428-433.

Eell, F. H. Teaching and learning mathematics (In

secondary schogls). Dubuque, lowa: Wm. C. Brown,

1978b.

Eentler, F. M, % Speckart, G. HModels of attitude—
behavior relations. Fsychplogical Review, 1979, 8&.
452-444.

Bezanson, W. K. Teaching structured programming in
FORTRAN with IFTRAN. SIGCEE Bulletin, 1975, Z{(1),
196--199.

Bohl, M. Information Processing with RASIC (Jrd ed.).
Chicago: Science Research Associates, 1982.

Brooks, F. F. Jr. The mythical man—-month: Essays on
software engineering. Reading., Mass.: Addison—
Wesley, 1975.

Brown, G. I. The live classroom. New York: Viking,
1973,

Bruce, W. F. Fersonality and children’s adjustment
problems. In £. E. Skinner (Ed.), Educational
psvchology (4th ed.). Englewcod: Frentice-Hall,
1959,

Erunery, Jd. 5. Toward a theory of instructiong
Cambridge: Eelknap Fress of Harvard University,
1966,

Buck, J., % Shneiderman, B. An internship in
information systems: Combining computer science
education with realistic problems. GSIGCSE Bulietin,
1976, 8(3), BO-8E,

Cashman, W. F., & Mein, W. J. On need for teaching
problem—-solving in & computer science curriculum.
SIGCESE Rulletin, 1975, Z(1), 40-46.

Cheng, R. On-lipe large screen display system for
computer instruction. ESIGCSE Bulletin, 1976, 8(1),

- R6H~I70.,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

Chi, E. C., Morah, M., &% Tausner, M. R. Computer
science at Staten Island Community College. SIGCSE
Eulletin, 1974, &(1), 48-02.

Comaa, H., Framer, J., % Penney, B. K. A student group
project in operating system implementation. GIGCEE
Bulletin, 1978, LQ{i}), 197-202.

Conway, R. W, Introductory instruction in programming.
SIGLEE Bulletin, 1974, &il), &—-10.

Cook, C. R. A self-paced introductory FORTRAN
programming couwrse. SIGCEE Bulletin, 1%¥7&, 8030,
78-79.

Copok, C. R. Applications programming course using
guided design. SIGCEE Bulletin, 1977, 2(3), 79-8=.

Cooper, R. T., & Lane, M. G. An improved hands—-on
approach to teaching systems programming and the
impact of structured programming. SIGCSE Bulletin,
1974, 8(3), 115-124.

Costello, D F., & Schonberger, R. J. On guiding the
business school toward computer literacy. GIGCSE
Bulletin, 1977, 2ii), 180-18%.

Crenshaw, J. H. Team projects in the undergraduate
curriculum. &HIGCSE Bulletin, 1978, 10{1Y, 203-205.

Daly, C., Embley, D. W., & Nagy, &. A pragress report
on teaching programming to business students without
lectures. S8IGCEE Bulletin, 1979, Lidl), 247-204.

Danielson, R. L., % Nievergelt, J. Aan auvtomatic tutor
for introductory preogramming students. SIGECEE
Bulletin., 1975, Z{(1), 47-50.

Davidson, D. Learning mathematics in & group situation.
The Mathemetics Teacher, 1974, &7, 101-106.

Davidson., M., Agreen, L., & Davis, €. &mall group
learning in junior high school mathematics. _Schoegl
Science and Mathematice, 1978, 78, 23-30.

Deimal, L. E. Jr.. & Prozefsky, M. Reqgquirements for
student programs in the undergraduate computer
science curriculum: How much is enough. SIGCSE
Bulletin, 1979, 1id{1), 11-17.

Dersham, H. L. A modular introductory computer science
course. SIGLSE Bulletin, 1981, 13(1), 177-181.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

Dinerstein, N. T. Does computer science belong in a
liberal arts college. SIGCSE Eulletin, 1975, Z(27,

o564,

Eccles, W. J., & Gordon, B. 6. Computer science by TV.
SIGCEE Bulletin, 1974, 8(3), H54-S6.

Eckberg, C. F. GSome proposals for distributing central
computing power at a university. SIGCSE Bulletin.
1976, 8(Z), 129-134.

Ettinger, H. A., Goodman, G. I., % Flumm, C. FORTRAN:
A self-paced, mastery-based course. EGIGCSE EBulletin,
1981, 1Z{1), &2-7E, o

Exline, R. V. Explorations in the process of person
perception: Visual interaction in relation to
competition, sex, and need for affiliation. Journal
of Perspnality, 1963, 21, 1-20.

Farley, F., Grossman, E., % Tucciarone, J. HMastering
BASIC——a beginner’s guide. Elmsford, New York:
Collegium, 1979,

Fishbein, M., % Aizen, I. Attitudes toward objects as
predictors of single and multiple behavioral
criteria. FPsycholegical Review, 1974, 81, &%-74.

Fishbein, M., % Ajzen, I. EBEeliefs, attitude. intention
and behavior:s An introduction to theory and
resparch. Reading, HMass.: Addison-Wesley, 1975,

Fisgke, E. R. EGchools re-evaluate arithmetic. New York
Times, August 12, 1980.

Fletcher, F. M. An appreoach to the problem of teaching
effectiveness. In W. J. Mckeachie (Ed.), The
appraisal of teaching in large universities. Ann
Arbor: University of Michigan, 1958.

tools of the programming environment: Description
and rationale. SIGCSE Rulletin, 1979, 11{(%, 11-14.

Fosdick, H., % Mackey, K. A course on the Fragmatic

Freeman, F. Realism, style and design: FPacking it
into & constrained course. SIGCSE Bulletin, 197&,

8(2), 150-157,

Friedman, F. L., & Koffman, E. E. Teaching problem
solving and structured programming in FORTRAN.
SIGCSE Bulletin, 1977, 2(1), &3-68.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

Garibaldi, A.. Affective contributions of cooperative
and group goal structuwres. Jownal of Educational

Fsychology, 1979, Z1l, 788-794.

Gates, A. I. Educational psycholqu (3rd edus). New
York: HMacmillan, 1948.

Geffner, R. The effects of interdependent learning on
self-esteem, interethnic relations, and intra—ethnic
attitudes of elementary school children. A field
experiment. Unpublished doctoral dissertation,
University of California, Santa Cruz, 1978.

Gillett, W. An interactive program advising system.
SIGCSE Bulletin, 1976, 8(1), F35-341.

Goldman, M. A comparison of individual and group
performance for varying combinations of initial
ability. Journal of Fersonality and Social
Fsychology, 1965, 3(1), 210-2164.

Goodman, D. Asy & Crouch, J. Effects of competition on
learning, ICUT, 1978, 26(2), 13Z0-133.

Grier, 5. A toeol that detects plagarism in PASCAL
programs. SIGCSE Bulletin, 1981, 13(1), 15-20.

Gries, D. What should we teach in an introductory
progamming course. SIGCSE Bulletin, 1974, &(1),
81-89.

Grossman, E.. % Tucciarone, J. Mastering micro BASIC.
Fleasantville, New York: Comtext, 1981.

Guha, R. K., Carr, F. A., & Smith, €. L. Standards
considered helpful. SIGCSE Rulletin, 1?77,_2(3),
Z-78.

Gunderson, B., % Johnson, D. Euilding positive
attitudes by using cooperative learning groups.
Foreign Language Annals, 1980, £§(1), 294,

Gurnee, H. A comparison of collective and individual
judgments of facts. Journal of Experimental
FPsychology, 1937, 2}, 105-11.

Hartley, E. L. Attitude research and the jangle fallacy.
In C. Sherif & M. Sherif (Eds.), Attitude,
ego—invalvement, and change. New York: John Wiley
and Sons, 194&8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177

Hoffman, L. R. Applying experimental research on group
problem solving to organization. The Journal of
Applied Behavioral Science, 1979, 15, 375-3%91.

Homeyer, F. C. An experimental microcomputer course (A
case history). BIGCEE Bulletin, 1977, 2(4), 41-44.

Horowitz, E. L.y & Horowitz, R. E. Development of
social attitudes in children. Scocicometrv, 1938, 1.
I01-738.

Hoviand, €. I., Janis, I. L., % Kelley, H. H.
Communication and persuasigpn. Mew Haven, Cann.: Yale
University Fress, 1933.

Irby, T. €. Teaching software development using &
microprocessor lahoratory. SIGCSE Bulletin., 1977,
{1y, 113118,

Jehn, L. A., Rine, D. C.. % Sondak, N. Computer
science and engineering educations Cuwrrent trends,
new dimensicons and related professional programs.
SIGCEE Bulletin, 1978, 10{Z), 162-148.

Jewell, L. M., & Reitz, J. Group effectiveneszs in
organizations. Glenview, Ill.: Scott, Foresman,
19831.

Johnson, D. C., Anderson, R. E, Hansen, T. F.;, &
Flassen, D. L. Computer literacy—-—what is it
The Mathematics Teacher, 1980, 73, 91-9&.

Johnseon, D. W., % Johnseny R. 7. Learning together and
alone., coonereation, competition aod
individualizatign. Englewood Cliffs, New Jersey:
Frentice Hall, 1%975.

Jahnson, D. W., % Johnson, R. T. Cooperative,
competitive and individualistic interdependence in
the classroom., Journal of Reasearch and Development
in Education, 1978, 12, 3-15.

Johnson, D. W., Jehnson, R. T., Johnseon, J., & Anderson.
Effects of cooperative versus individualized
instruction on student prosocial behavior, attitudes
toward learning and achievement. Jowrnal of
Educational Psychology., 1976, &8, 444-452.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

Johnsan, R.e T.y & Johnson, D. W, Cooperative learning,
powerful sciencing. Science and Children, 1979,
Nov-Dec, Z26-27.

kelley, H.oy & Thibaut, J. W. Experimental studies of
group problem solving and process. In G. Lindzey
{Ed.), Handbpok on seocial psvehology (Vol. 2).
Cambridge, Mass.: Addison-Wesley, 1954.

lelman, H. C. Compliance, identification and
internalization: Three processes of attitude change.

=~

Journal of Conflict Resolution, 1998, 2, Sl-éu.

Fenworthy, D. J.. & Redish, k. A. Software team
projects. SIGCEE Bulletin, 1979, 11(1), 37-440.

tlernighan, E. W., % Plauger, F. Jd. Frogramming style.
SIGCSE Bulletin, 1974, &{(1), 90-%96&.

Fhailany, A. Advanced structured COROL programming.
SIGLSE EBulletin, 1977a, 2(1), S9-6Z.

hailany., A. Alternative teaching strategy for an
introductory computer language course. SIGCSE
Bulletin, 1977b, Z2{l), F3-95.

khailanys A., % Holland, R. H. An introductory
computer course in a school of business. SIGCSE
Bulletin, 1973, Z{(2). Z9-4Z.

Fhailanys A., % Sawxon, €. Conducting project team
classes in data processing. SIGCSE Bulletin, 1278,
101y, 189192,

Fieslers, C. A., Collins, B. E., & Miller, N. Attitudes

change—-a ¢ritical apalvsis Qf fheoretical

approaches. New York: John Wiley and Gons,

1969,

Kimura, T. Reading before composition. SIGCEE
Bulletin. 1979, 11d1), 1&Z-lbé.

kKirng, V. B. A confluent approach to nursing education
through group process. Nurse Educator, 1978, {2,

20-25.

borfhage, R. A,y % Smith, R. J. Individualized
instruction in computer science. SIGCSE Bulletin,
1974, &(1), 161-164,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

179

Lamm, H., % Trommsdorff, G. Group versus individual
performance on tasks requiring ideational proficiency
(brainstormingls A review. European Journal of
Social Psycholegy., 1973, 2a 361388,

Lane, M. G. A Hands—on approach to teaching systems
programming. SIGCSE Bulletin, 1973, Z(1), 23-30.

Lemcs, R. 8. A comparative study of the effectiveness
af team interaction in CURUL programming language
learning. Unpublished deoctoral dissertatieon, UCLA,
1977.

Lemos, R. 8. The cost-effectiveness of team debugging

in teaching COROL programming. SIGQGE Bwiletin,
1978, 1041), 193-196.

Lemos, R. S. An implementation of structured
wal k—~throughs in teaching COROL programming.

"‘"E‘

Communications of the ACH, 197%a, 22(4), 235340,

Lemaos, R. 8. Teaching programming languages: A survey
of approaches. SIGCEE Bulletin, 19790, 11¢1), 174-181.

Lightner, 8. M. Accounting education and participatory
group dynamics. Collegiate News and Views, 1981,
F5(1), 5-9.

Likert, R. A. A technigque for the measurement of
attitudes. Archives of Fsychaology, 1932,
No. 140, 1-53.

Linder, W. Computer-tutar: From a student project to
a self-paced CAI/CMI cowrse. SIGCSE Bulletin, 1978,
B(Z), &7-60,

Little, J. ACH committee on curriculum in computer
science recommendations for the undergraduate program
in computer science. SIGCSE Bulletin, 1977, %42,
1—14.

Lucas, W. R. Planned attitude change while teaching
computer literacy. SIGCSE Bulletin, 1976, 8(1), 90-94,

Mackey, K., % Fosdick,lk. An applied computer
science/systems programming approach to teaching data
structures. SIGCSE Bulletin, 1979, 11(1), 7&4-78.

Maier, N. R. F, & SBolem, A. R. The contributions of a
discussion leader to the gquality of group thinking:
- The effective use of minority opinions. Human
Relations, 1932, &, 277-288.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

Martin, D. C., % Dowcouwis, A. J. An evaluation of the
in—-service computer mathematics program, 1960-1962.
Froject on Information Frocessing Newsletter, 1964,
2{2), 11-15.

Mathis, R. F. Teaching debugging. SIGCEE Bulletin,
1974, &), G9-&3.

Mavaddat, F. An experiment in teaching programming
languages. SIGCSE Rulletin, 1976, 8(&), 45-55.

Mckuen R.. % Davidson, N. An alternative to individual
instruction in mathematics. The American Mathematical
Monthly, 1975, 82, 1006-1009.

Mclieod, D. E., & Adams, VY. M. The interaction of field
independence with small—group instruction mathematics.
Jaurnal of Experimental Education, Winter 7%9/80,
48(2) , 118-124.

Menninga, L. D. Introduction of practical esperience
inte cwrriculum 68 through integration of
courses., SIGESE Bulletin, 1974, &£{1), 152-154.

Miller, N. E.y & Fetersen, C. 8. #An evaluation scheme
for a comparisecn of computer science curricula with
ACM s guidelines. SIGCSE Bulletip., 1981, 13(1),

216-227.

Mize, J. L. HMaking an academic curriculum relevant to

business requirements. SIGESE Bulletip., 1976, 8(2),

24-27.,

Moccido, M. K. Teacher training in computer science
education in western Australia: Group projects.
SBIGCEE Bulletin, 1978, 10(1), ZO&4-209.

Newman, J. R. Alternative teaching techniques in
computer science. SIGCEE Bulletin, 1973, Bid),

2G-32.

Mievergelt, Jd. Appropriate areas of computer science
research in problems in education. gQIGCSE Rulletin,
1974, &(1), 4é.

Noonan, R. E. The second course in computer programming:
Some principles and consequences. SIGCSE Rulletin,
1979, 11{i), 187-191.

Ogdin, J. L. The mongelian hordes versus superprogrammer.
Infosystems, 12/72, 20-23.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181

Overall J. U., & Marsh, H. W. Midterm feedback from
students: Its relationship to instructional
improvement and students® cognitive and affective
outcomes. Educational FPsvchology, 1980, Zi., 8556-86%.

Perry, J. M., % Sondak, N. E. The project experiment
in undergraduate computer science education. SIGEGE
Bulletin, 19768, 10(2), 21-30.

Ferry, J. T., & Weymouth, T. E. A modified CF team
approach to an operating system class project.
SIGCEE Bulletin, 1975, FZ(1), JI1-39.

Philipsen, G., Mulac, A., % Dietrich, U. Effects of
social interaction on group idea generation.
Communications lonographs, 1979, 45, 1192-125.

Fiaget, J. Science of educaticon and the psvchology of
the child. New York: Viking FPress, 1971.

Fiaget, J. To understand is to invent:s The futuwre of
education. New York: Grossman Publishers, 19735,

Flum, T. W.~8., % Weinberg, 6. M. Teaching structured
programming attitudes, even in APL, by example.
SIGCESE RBulletin, 1974, &£(1), 133-143E,

Fortery, C. H.y & Nesa, L. W. Frogramming for terminal
applications. GIGCSE Bulletin, 1975, Z{Z), 77-8Z.

Frather, R. E., &% Schlesinger, J. D. A
lectureslaboratory approach te the first course in
programming. SIGCSE Bulletin, 1978, lo(1), 115-124.

Hipiey, G. D. A course in effective programming.
SIGCEE Bulletin, 1975, 7{1), 102-108.

Rosenberg, I. Introductory computer science courses:
A modular design. SIGCSE Bulletin, 1976, 8(1), &2-6&4.

Rothy, R. W. Btudents and faculty training in systems
analysis. GIGCSE Bulletin, 1975, Zi{2), &7-70.

Ruschitzka, M. An operating systems implementation
project for an undergraduate course. GIGCSE
Bulletin, 1977, 2{i), 77-84.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182

Sackman, H. Man—computer problem solving: Experimental
evaluation of time—-sharing and hatch processing.
Frinceton., New Jersey: Auerbach, 1270.

Sanders, D. H. Computers in business (4th ed.). New
York: McGraw—-Hill, 197%.

Schmuck, R« A, % Schmuck, P. A. Group processes in the
classroom. Dubugue, Iowa: William €. Brown, 1971.

Schribner, T. Jd. Industry reaction to computer science
education. 8IBCEE Bulletin, 1974, &(1), 78-79.

Schulman, E. L. Turning on the undergraduate computer
science student: A Re—~IFL suggestion. SIGCSE
Bulletin, 1977, 9(1), 178-179.

Scott, W. A. Attitude measuwrement. In &. Linzey %

E. Aronson (Eds.), Handbook of social psychology
{(Vol. 2). Cambridge, Mass.: Addison-Wesley, 1%948.

Sebaugh, J. L. The stepwise approach to introductory
programming projects with examples. GSIGCSE Rulletin,
1974, 8{(1), Z72-3Bl.

Senn. J. A. A problem oriented pedagogy for computer
language. SIGCSE Bulletin, 1974, &£(4), 26—£9.

Senng J. A.y & lves, B. Behavioral education requisites
for application—oriented computer scientists. SIGCSE
EBulletin. 1979, 11(1), 193-201.

Sharan, S. Ceooperative learning in small groups:
Recent methods and effects on achievement, attitudes,
and ethnic relations. Review of Educational Research.

1980, S0(2), 24i-271.

Shaw, M. E.. & Wight, J. M. Scales for measurement of
attitudes. New York: HMcGraw-Hill, 1967.

Shelly, G. EB., % Cashman, T. J. Implementation of
structured walkthroughs in the classroom. The
Compiler, Fall 1977, 11-10G.

Sherif, C. W, % Sherif, M. Attitude. ego-involvement.
and _change. New York: John Wiley and Sons, 1968.

Shneiderman, EB. Group processes in programming.
Datamation, 1980, 2&(1), 138-141.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

Singhania, R. F. Issues in teaching the introductory
course in computers in business curriculem. AEDE
Journal, Fall 1980, 45~31.

A ————

Sjcerdsma, T. An interactive pseudo—assembler faor
introductory computer science. SIGCHEE Bulletin, 1976,

8(1), T42-349.

Slavin, R. Effects of student teams and peer tutoring
on academic achievement and time-on-tagk (Report
No. 255, Center for Sccial Organization). Raltimore,
Marvland: The John Hopkins University. 1978,

Spence, J. W.y % Groin, J. C. Bystems analysis and
design——a computer science curriculum. QIGCSE
Bulletin, 1978, 1o0(4), 24-27,

Stanford, G., % Roark, A. E. Human interaction in
education. ERoston: Allyn and Bacon, 1974.

Strrang, R. Group activities in college and secondary
schoel. New Yeork: Harper and Brothers, 1941.

Tam, W. C.. & Busenberg, 8. N. Fractical euperience in
top—~down structuwred software production in an academic
setting. SIGBCSE Bulletin, 1977, 241>, 32-36é.

Teague, D. B. Computer programming II, a
project—oriented course. SIGCSE Bulletin, 1931,

1Z(1), 41-45.

Thiabut, J. W., & kelley, H. H. The sccial psychelogy
of groups. New York: Wiley and Sons, 1939.

Thomas, J. Cuy & Carroll, J. M. The psycholcogical study
of design (Research Report No. RC 769G, HLIZZ0A) .
Yorktown Heights, New York: IBM Research Division,

June 1, 1979.

Teai, 5. W.y, % FPohl, N. F. &Student achievement in
computer programming: Lectwe vs. computer-—aided
instruction. Journal of Experimental Education, 1977,

46(2), 6&6-70.

Unger. E. A., & Ahmed, N. An instructionally acceptable
cost effective approach to a general introductory
course. SIGCSE Rulletin, 1976, 8{2). 28-31.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184

@ainwright, F. A survey of faculty computer experience,
usage, needs, literacy and attitude. SIGCSE Bulletin,

1979, 11(2), 27-Z5.

Weaver, A. C. Microcomputers in the computer science
curriculum. BSIGCSE Bulletin, 1978. 1Q(1), 171-176.

Weinberg, C. Price of competition. Teachers College
Record., 1966, &7, 104~114,
e —————————— e

Weinberg, G. M. The psvchology of computer programming.
New York: Van Nostrand Reinhold, 1971.

Williams., k. An experimental couwrse in advanced
programming methods. SIGCSE Bulletin, 197&, 8(4),
15-18.

Zajonc, R. B. Social facilitation. Science. 1962,
149, Z69-274.

Zimbardo, F., % Ebbesen, B. Influencing attitudes ang
changing behavior. Reading, Mass.: Addison-Wesley,

1970.

Znaniecki, F. Social groups as products of participating
individuals. American Jownal of Sociclogy. 1939, 44,
7929-811.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185

Reference Notes

1. Upiversitv of Nebraskga Computer Network Newsletier.

Lincoln, Nebtraska, March, 1979.

2. Goldberg, D. MWriting proofs cooperatively in small
garoups: An exploratory study. Faper presented at the
NCTM meeting, Cherry Hill, New Jersey, Spring 1980,

. DeVWies, D., & Edwairds K. Expectancy theorvy and
cooperation——competition in the classroom, Faper
prresented at the annual convention of the American
Fsychological Association, New orleans, 1974.

4. SBharan, 8., % Lazarowitz, R. Effects of an
unstructwred change program on teacher X
attitudes and perceptions. Manuscript submitted for
publication, 1984.

S. Born, D. G. Instructors manual for development
of a persaonalized instruction couwrse. Salt Lake
City: University of Utah, 1970,

6. Weinberg, G. M. Maintaining success through formal
technical reviews. Ethnotech Inc., F.0. Box 6627,
45535 So. 48th, Lincoln, Nebraska &BE06&.

7. Hazen, M. Evaluation of an experiment in
introductory programming instruction. Lincoln:
Department of Computer Science, University of
Nebraska, May 1979.

8. Suinn, R. M. Hathematical Anxiety Rating Survay,
Fort Collins, Colorado: RMESI, Inc., F.0. Box 10664,
1972,

F. Hinnesota Computer Literacy and Awarenessg
Acsessment. FMinnesota Educational Computing
Consortium, 1979.

10, Bullock, D. E. Survey of entering students
at HMercy College, Qffice For Flanning and
Institutional Research, Mercy Colliege, Dobbs
Ferry, New York, April 1981.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186

Appendiy &3 Burvey of Entering Students——Fall 1381
{Bullock, Note 100

TABLE 2?
Age Distribution of Respondents (%)

Fall 1981
Age Cohort Men Women Total
18 years 12.7% 10.1% 11,2%
18 - 22 years 57.5 54.9 55.8
23 - 25 years 10.9 .1 9.4
26 - 30 years 9.1 8.9 9.2
31 - 40 years 8.1 10.8 9.7
41 ~ 50 years 1.5 6.0 3.9
51 - 60 years 0.3 0.8 0.6
61 and over 0.0 0.4 0.2

TOTAL 100.0 100.0 100.0%

A review of the data indicates that more than two out of five respondents
are non-white. This fact holds across all variables including gender, age and
enrollment status, The following table shows the racial/ethnic background of
the respondents.

TABLE 25
Racial/Ethnic Background

Fall 1¢81
Classification -) Percentace
American Indian 0.8
Asian/Pacific Islander 1.0
Black 17.6
Hispanic 23.0
White 53.8
Other 3.9

Fifty-three pecple indicated that they have some form of permanent
handicap. Approximately forty percent (39.6) of these students listed
"restricted vision" as their impairment. Seventy-two percent of this group
are enrolled on a full-time basis.

The respondents identified various teaching sites as their "home campus”
in the following pruportions:

Dekbs Ferry 57.%%
Yorktown Heights 4.6%
White Plains 2.2%
Bronx 17.3%
Ycnkers 15.7%
Peexskill 2.3%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1e7

TABLE 28

gEntering Class Most Important Goals

Goals Primarv Secondary Tertiary Total Meicnfed Rank
Obtain certificate/degree 44.6 21.9 5.2 71.7 1
Increase academic knowledge 29.1 1.0 5.5 83.6 2
Improve technical skills 4.0 14,2 11.3 28.5 3
Complete courses for transfer 2.4 3.8 16.4 22.6 4
Enrich daily life 3.6 5.6 12.2 21.4 5
Abili{ty to be independent 3.2 5.5 11.6 20.3 6
Formulate long-term career plans 3.1 7.5 6.5 17.1 7
Discover career interest 4.0 4.8 3.6 12.4 8
Prepare for new career 2.0 6.3 3.7 12.0 9
. Increase self-confidence 1.8 2.7 3.6 8.1 10

More detailed analysis of the respondents by various demograpnic character-
{stics {is available in the Planning and Institutional Research C¥fice. Next we
examine those factors influencing student decisions to attend Mercy Coilege,

Decision to Attend Mercy College

The three most mentioned reasons for attending Mercy .College by the respon-
dents were: (1) "Course Offerings"-16.5 percent (2) “Closeness to Hore'-16.5
percent and (3) "Academic Reputation"-11.8 percent. Other reasons mentioned by
at least five percent of the students include "a former students advice,”

“the availabjlity of financial-zid," "cost," "teacher/friends. advice,” and
"counselors advice.® This “advice factor" appears to be an advantage and
coincides with findings of earlier studies by the College which suggest that
once an individual participates in the Mercy experience, they leave satisfied.

An examinaticn of thé following table sheds 1ight on how respcndents learned
about the College.

TABLE - 27

Hew Respondents Learned About College

Source Percentace *
Relatives/*riends 32.2
Material receiveg in mail 8.2
Collece cataleg 15.9
People at my high scheol 2.8
Representative of the college 7.2
Information display 4.0
Material in newspaper/magazine 2.9
Placement service Z.9
Other sources 1.6
Radic/TV advertisement 8.t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

188

TABLE 28 °
Respondents Choice of Major by HEGIS Taxonomy

Program : ’ Percentace
Business Administration 34.3
Undecided 15,8

Comcuter Information Sciences 12.5
Public Affairs & Social Services (includes CRJ, PSA, SOW) 7.8
Psychology 7.3
Social Sciences {includes HIS, POL, BSC, SOC) 5.2
Health Professions (includes Nursing and Medical Tech) 5.2
Letters (includes English and Speech) 4,3
Biological Science 3.6
Fine/Applied Arts 1.5
Foreign Languages 1.5
Mathematics 0.7
Communications 0.1

Males leaned towards programs in business, computer science, public affairs
and social sciences. Women chose ccurses of study in all fields, concentrating
in business, computer science, health professions and psychclogy. The number
of undecided students divides equally by gender,

Most individuals responding to the survey enrolled on a fyll-time basis.
Larger numbers of "Social Science® majors (eg. BSC, HIS, POL,-SOC) were enrolled
on 2 part-time bas{s than any of the other programs. This may be a function of
program design and scheduling. .

Several questions related to time and Jdength of instruction were constructed
for consideration. In response to a question about class meetings for the day
sessicn, students favored (53.5%) a sixteen-week conrse that meets twice a week
for 1y hours. Nearly one-fourth preferred a sixteen week term meeting once per
weak for three hours, Abcut one-fifsh preferred the schedule resembling the
present eight-week term arrangement.

The same question asked about courses starting after 5:00 P.M. yielded
sligntly different. results in terms of percentages, Greater numbers preferred
the cnce per week format and the eight-week type ccurses. Still more than Forty
percent {41.9%) preferred the twice a week, Sixteen week semester. This could
be discounted by the Cobbs Ferry experience.

In response to the question, "What type of instruction do you prefer the
mest?" students chose lecture by instructor (41,2%), small-group discussien
(38.7%) and self-paced instruction (18.9%). In later studies this cuesticn wi:
te examined with respect to age as discussion rejarding how adults lezrn
continues.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1¢

Appendix E: Student Information Sheet

PLEASE USE INK AND PRINT NEATLY
COURSE SPRING 1982
NAME
ACDRESS
PHONE
SS #
AGE
NUMBER OF COLLEGE CREDITS COMPLETED
NUMBER OF COLLEGE CRECITS TAKING THIS SEMESTER
COMPUTER COURSES TAKEN , WHERE TAKEN AND GRALES

————

n & w -

DO YOU WORK? IF YES, BUSINESS PHONE HOURS /WEEK
CAREER GOAL

SCHEDULE THIS SEMESTER FOR COURSES AAND WORK-Block in hours

Moncay . descay | wecnesday ; inursiay ., fricay iSaturra;-'

1

- NAHE PHONE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PLEASE NOTE:

Copyrighted materials in this document
have not been filmed at the request of
the author. They are available for
consultation, however, in the author’s
university library.

These consist of pages:

P. 190-195 College Placement Test in Arithmetic Skills

P. 196-200 College Placement Test in Algebra Skills

P. 201-206 College Placement Test in Usage:

University
Microfilms

International
300 N Zeeb Rd., Ann Arbor, M1 48106 (313) 761-4700

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

207

Appendix F: The Preliminary Programming Froficiency Test

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MatZcis 134
Nane

Spring 1982

Pre-Test in BASIC

This test in NO way influences your final grade.

This test helps to

determine the level and pace of the present programming course. This
test refers to the BASIC language as taught at Mercy College on APPLE II.

-Here is a quick review (or an introduction) to some rules
governing the syntax (grammar) of BASIC.
a)Each iine of instruction is numbered and during program execution the
line numbers are followed sequentially from lowest to highest.
b)variable names are single or double letters or single letter followed by

a digit (0-9).

¢)Reserved words used for instruction statements are:

(1) 10 REM ®()$:. IJNBHS%%¢
(2)33 LET A=B-C

(3)50 GO TO 998
(4)88 IP A>B*C-34 THEN 100

(5) 25 INPUT C5.PP.,X
6) 56 PRINT X,PP,D4
e 26 ? %.PP.DE

30 ? “HELLO".X,.Y

REM is a remark statement and any characters
may follow it. .

LET is an assignment statement.It perf.orms the
calculation on the right-hand side of the equal
Bign and atores the answer under the variable
name on the left-hand side of the equal =ign.
Symbols.addition(+),sudbtraction(-),division(/),
multiplication(*),exponentiation(a).

GO TO is an unconditional transfer of the
program from line number 50 to line number 998.
IF...THEN is a conditional transfer of the
program irom line number 88 to line number 10C
if the relation following IF is true. There
are & possible relations that can be tested,
>, L, >m &=, &> (not equal).

INPUT takes in values from the keybozred for
The variable names that appear in a list

PRINT or ? types out the values from streage
Tor the variables names in the list and any
messages between quotes.

4 Treat each line as an individual line of BASIC code and determine if

it is valid line of code or if it is an invalid line of code
FOF zach

¢
(2)
(3)
(#)
(5)
(6)
()
(8)
(9)
(10)

20 LEP C=5P+H/F
30 ACCEPT X1.,X2 X3

71 PRIMT “THE ANSWER IS
80 LET A*B=HDAJ

90 INPUT 5.7,99

40 GO TO END

100 IF A¢)B THEN 89

90 LET B6=(X25+B2)a3
88 PRINT XYZ

100 REM #"THIS IS INCORRECT®
"X
.

'vlrn? V;ALID or INVALID
1

(2)
(3)
)
{(s)
(6)
(7)
(8)
(9)
(10)

l

l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

208

209

f Directions: Use the following diagram to answer the questions below.

[START HERE]

READ A B.C FOR THIS QUESTION
TS A+ B< C7__ YES_3] CALCULATE n USING]
Dr 2(A+B)+C
NO

*x
CALCULATE D, usmcl
DEA+B+C

fs FLEULATE E, USING
E= D-

CALCULATE E, USING

ExD4C L
IS A 102 NO LET N=
5 e =]
YES >
[IS N =52 E A N
A, BY ADDING 2 TO A
" CAT TE A NE
& N, BY ADDING 1 20 N
% v
CALCULATE P, USING
Pe Ad&E
l STOP! g D JE IF

(1)If A=2, B=3, C=6 , what is the final value of

(2) If A4, Bm3, Cml, what is the final value of

(3)If A=12, B»2, C »5, what is the final value of

(4) Let A=S5, and C =10. The w&,‘me of B is unknown, but it is greater
than 5. If the value of F is 25, what must .value of B have been?

choose one answer é ; 1
(c) 16

(d)
(e) none of these or imposcsibie to détermine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

210

Part IIl- Below are the flowchart and the BASIC code for a program that
processes the testscores of 100 stufents and cdetermines whether
they passed (%= 65) or falled the test.

You are to make changes in the flowchart or in the BASIC cofe
so that the program will perform the modifications requestec.lo

one modification per diagram,

(A)mocify the program to print out . (B) Modify the program to finé and
a table of 3 columns with proper print the average of all the
heaaings of NA.Z, SCORE,and GRADE scores.

-~

100 LET X=0 ' .00 LET K=0

200 PRINT "TYPE IN STUDENT'S. NAME" 200 PRINT "TYPE IN STUDENT'S NAME"
300 INPUT NS - Ce . 300 INPUT NS$

400 PRINT " TYPE IN STUDENT'S SCORE" 400 PRINT “"TYPE IN STUDENT'S SCORE"

500 INPUT s 500 INPUT §
600 IF S 65 THEN 900 600 IF S 63 TH£§ 900
Zoo PRINT"PASS" 700 PRINTl pgss

00 GO TO 1000 800 GOTO 100

900 PRINT "FAIL" 00 PRINT “FAIL"
1000 LET K=K+l 1000 LET K=K+l

1100 IF X 100 THEN 200- 1100 IF K 100 THEN 200
1200 END 1200 END

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(C)vocify the prosram to fin¢ and print
the no. of stucdents that passed anc the

no. of students that failed the test,

100
200
300
400
500
600
700
800
900
1000
1100
1200

LET K=0
PRINT "TYPE IN STUDENT'S. NAME"
INPUT NS t i
PRINT "

INPUT S

IF § 65 THEN 900
PRINT"PASS"

GO TO 1000

PRINT "FAIL"

LET K=K+1

IF X 100 THEN 200"
END

TYPE IN STUDENT'S SCORE"

211

(I') Jofify the prosram to find the
stufent with the highest score and
print his/her name.

100
200
300
400
500
600
700
800
800
1000
1100
1200

LET K=0

PRINT "TYPE IN STUDENT'S NAME”
INPUT N$

PRINT "TYPE IN STUDENT'S SCORE"
INPUT §

IF S €5 THEN 900

PRINT “PASS"

GOTO 1000

PRINT "FAIL"

LET K=K+l

IF X 100 THEN 200

END

(E) Describe, in words, how you woulf change this program if you ¢icén't
know in advance how many stucents there were to be processed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix Bz

10
20

30
40
S0
&0
70

80

PRINT "GROUFP SELECTION"

PRINT "TYFE IN NAMES, GOING A
CROSS THE ROW"

FOR K =1 TO 6

INPUT GA3 (K),GRB$ (K) ,GC$ (K)

NEXT K

FOR J = 3 TO 7

PRINT "GROUPS FOR ASSIGNMENT"
3Js PRINT t PRINT

FOR JJ =1 TO &

. 90 DAS(JJ) = GA%(II)

100
110
120
130
140
150

160
170

180
190

200
210

DE$ (JJ) = GB$(JJ)
DC% (JJ) = GC&(IT)

NEXT JJ .

FOR 6 =1 TO &

X = INT (6 & RND (1)) +
IF DAs(X) = "EMPTY" THEN 140

Y= INT (6 ¥ RND (1)) + 1%
IF DB%(Y) = "EMPTY" THEN 160

Z = INT (6 % RND (1)) + 1
IF DCs$(Z) = "EMPTY" THEN 180

PRINT “GROUP"3;G6

PRINT DA% (X),DB$(Y),DC$(Z)s PRINT

DAS$ (X) = "EMFTY"

DE$ (Y) = “EMPTY"

DC$(2Z) = "EMPTY" -
NEXT G

NEXT J

END

BASIC Frogram to Form Three-member
Heterogeneous Groups

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

213

Appendix H: The Course Qutline

CIS/MAT 13t STRUCTURED PROGRAMMING USING FORTRAN E. Grossman
Spring 198z
tndividual Programming
Course Qutline

Objective: It is assumed that students enrolled in this course
have already been introduced to computers and programming.
Struct_urec Ppogramming Using FORTRAN is intended to substanially
develop the student's ability to employ good programming techniques
such as structured constructs, top-down design anc¢ extensive
documentation. The students will be taught to solve prodlems by
forming algorithms using structured pseudocode and to translate
them into the high-level programming language FORTRAN.

Text: Problem Solving and Structured Programming in PORTRAN:
Friecdman and KolIman:; Addison Wesley. sSecond Edition
Gracding: See attached page
Attendance: Attendance will be kept. It is the student’s respnsibility

to keep up with the work. We meet only once or twice a
week. Get the phone numbers of several students NOW!

O0ffice Hours: Dobbs Ferry- Mon.& Weg l12-1, Thurs.10-10:30
PSB- Phone693-4500 EXT.298
Yorktown- Thurs. 11:;30-12:00 & 3:00-3:30
sat. 12.12:30
Faculty office, Phone (9l4) 245-6100

TIERT Ao RIAL COVERED/READINGE TSIoN. JASSoN, FR0eA TS
PROGRA.1 | CUE I CLASS
A

statement spacing, editing, review

of computer systems, visit to

terminal room, Chan.l

Statement typese. TYPE,ACCZPT,FORMAT 2 #1 completed

C,RZAL,INTZGER, variable modes,

conditional transfers, IF (Pleser

Crapss. 1.2

3 Structured program concepts,flow-"
charts, algorithm development,

pseudoeode, Chapt, 3

L2 Library functions, arithmetic ex- +3

cressions Chapt, O

> Incexed DO loops 2 completed

Nested 2o lsops, Chant, &

B ' GEe-Flm:nsional arrays 4

Ao me

Jz Arrays and implied DO 73 completed
)

1 Login/logout procedure,FORTRAN 7l '
{

}

i

1

Chapt.
rroblem Session 5
Chapts. 1.5
Jidsern .
Log.cal and character data. #L completed
Case structure
Chapters 6,9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

214

WozeK MATZRIAL COVEREZD/RZALINGS ASSIGN. | ASSIGN, PROG. STAG
PROGRAM | DUE IN CLASS)
10 Formatting, Multidimensional #6
arrays. Chapts. 8,10
13 Subprogramming- FUNCTION, #5 completed
SUBROUTINE, COSMON
= Chaot. 7
y: Problem session on SUBROUTINE
and_FUNCTION. Chapt.? #7 $6 completed
13 File OPEN and CLOSE. In class
programming project 42 _poded
! Problem session, Chapts 6-10 #7 first run
| Final Chapters 1.10
At Dotbs Fer campus on desk 3 N
By B‘P.m. ry P my #7 completed

A Note about your text.

Even the best programning texts make slow reading- give yourself
plenty of time and don't read the assigned sections as if they
were science fiction. One ofthe skills you must master for
computer programming is meticulous, detailed thinking. To
understand the examples, you will have to follow them almost
letter by letter, You will find that such attention to detall
is essential to write correct programs, and will save you time

in the long run.

Gradine: Grades are a necessary evil, Here is how I plan to grade
your achievement in this course.

Midterm and Fingl will be 2 hour written exams. Both exams
will be open book and similar to guestions in exercises and
discussed in class.

There will be 7 programming assignments., Each will be worth lo
points except the last one which will be worth 20 points. The
grade for the programming assignment will be given on the final
printed output- including a listing of the program and of the
program output.

You will be responsible for understanding the reading material
assigned up to date, the exercises and how your program works,
The answers to each programning assignment will be available at
the class meeting the week after the asssignment is due~ if you
do not hand in your assignments on time, you will be penalizecd,
You are expected to hand in perfect assignments since they can
be redcne as often as you like before their due date.

Final Grade- Assigned Programs 290;; 80 points

Midterm 304 120 points
Final 504 _200 points
Total 100% 400 points

A 372-400 cumulative points - extral and origimal werk
Br 350&CP <« 372
B 326&CP« 350
C+ 20BeCPe& 326
C 28L&CPe 308
D 250&CP <288
F CP4250

Do your own programs, Any programs shared will cause a sharing of the
grada, ’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

215

: . . Group Programming
CIS/MAT 134 COMPUTER_PROGRAMMING I E. Grossman

Course outline

Objective; It is assumed that students enrolled in this course have already
been introduced o computers and programming. This course is intended to
subsa.ntially develop a .student's ability to construct a structure-
algdrithm using the high-level programming language FORTRAN. The students
should also be instructed in good programming technijues by using structured
constructs and extensive documentation. Students should be teaught to design
their own algorithms using structured pseudocode and then shown how this
can be implemented in FORTRAN.

Texts: (A) Problem 501vi and Structured Programming in FORTRAN: Priedman
and Koiiman : Addison wesley.

(B)An Introductmn to Structured Programming in FORTRAN: IBM GC-1730-0
grading: Mi%ferm and Final - 757 of iinal grase

7 assigned programs- 25% of final grade
gagigned programs are to be done in groups according to the schedule
elow,
Attendance: Attendance will be kept. It is the student's responsibility to
keep up with the work,
0ffice hourss; Dodbs Perry- PSB#20- Tues :12-1:20,Thurs;12:50-1:20-6934500 ext. 343
Yonkers- Faculty roome- rhura.n;so-xz,zo. Priil2:00.1:00-963-0372

RAZE | BATESIAL COVERFO/READTACS Ak LB STACE DUE INCLASS
Login/Logout procedurs, editing
review of ccmputer systems #1
(A) chan.l

Statement types- TYPE,ACCEPT,
PORMAT, C, REAL INTEGER
assignment. IF Cp) Gt ees #2 |#1 ompleted
) 1.2 (R

+ { Structured program concepts,
flowcharts, algorithm development

pseudocode,
- A) 3, (B)2)) #2 coded
1orary lunctions
?ﬁtﬂmetic expressions #3 |#2 1st run
Indexed Do laop #2 completed
Nested Do loops #3 cgggd ¢
—_— (A) &
?:Sgdimemional arrays g4 1#3 lst run
il Arrays and implied DO #3 completed
v S T #4 coded
roblem session # #4 1st run
(A)l'SO(B)lIZ 5
Midterm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

216

R AT ZRIAL COVERED/R::ADIﬁGS ASZIGN, | ASSIGN, FROG. STA
PROGRA:1] DUZ IN CLASS \
12 Formatting, Multidimensional #6
_arrays. Chapts. 8,10 _
I Subprogramming~ FUNCTION, #5 completed
SUBROUTINE, CO#ZION
b IS CTACTTIT SUBROUTIN
oblem session on E
- i:d FUNCTION. Chapt.?) #6 completed
b] File OPEN and CLOSE. In class
_programming oroject 47 poded
T [Froblem session. Chapts 6-10 #7 first run |
Final Chapters 110 .
Tobe o - At Dobbs rerry campus on my desk #7 completed.
G n .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

217

Appendix I: Group Programming Frocess

HAT/CIS 134
FROGRAMMING WITHIN A GROUP

Groups of 3-% students will be formed to work on each programning
assignment. The group will be fixed for that assignment and will
meet three times during class time,

First class meetinz: The group will analyze and discuss possible
Solutions for the assignment-sketching a flowcharti- writing pseudocode.
purine the following week: ®ach member will individually design a
solution and write the code for the program and obtain a listing

of the code - a copy for each member of the group. The copies will

be left in a box in the terminal room with the o fier members' names

on the coples. It is the responsibility of each member to pick up

the listing of the other group member'’s program before the next

class meeting.

Second Class Meeting: Each member will walkihrough the other member's
Tisting (code) noting syntactical, logical anc typ#sraphical errors.
Fach member will examine the program to see if it will process data
properly - make up different values and do a desk gheck with them.
fach member will return their copy of the listed code with comments

to the author. Do not compare another member's program with yours

but rather review it to determine if it will work- produce correct
results. If the group dtermines the design is incorrect, the group
should not attempt to redesign the program; rather the guthor should
be directed to redesign the pro§ram and the group should make
arrangements to reconvene at a later time.

turing this week: Each member should remove the bugs that were

noted and get a complete listing and run of the programming assignmant
-~ again leaving copies for.the other members in the terminal room.

It is the responsibility of each member to pick up the listing and run
before the next class meeting.

Third Class Meeting: Each member will walkthrough the other member's
trogram listing and run, checking for goocd programming style and
finding out why the program did or did not work. Each member will
f£ill out comment sheets cn the programs he/she reviewed during
the walkthrough. .
curine this week: Each member is responsible to complé‘the assignment
anc hanc in (1)a complete listing of program, run , printout

(2)comment sheets from group reviewers

(3)summary sheet on this assignment filled out by member.

You should find the class enjoyable and productive in 4erms of the
time sypent for what you learn. Your major resources are (1) team
members (2) textbook/lecture notes {(3) computer feddback and of
course, (4) the instructor. ’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

218

Appendisx J: Assigned Program Summary Sheet

MAT/CIS 134

ASSIGNED PROGRAM SUMMARY SHEET

Programmer's Name
Section

Assignment g

1. How much time (approximately) did you spend in designing an
algorithm, translating it into aode, debugging and rewriting
this program? (im hours)

2. How much time did you spend in the terminal room to input and
run this program? {printed by the computer at logout)

3. How many runs were necessary before this program “"worked”"?
(printed by computer as a generation
number after your filename,
Example:; EGRO4.POR,8 means

* ¥ 8 revisioAs/rins were done.

4. Briefly list the errors that were found on this program by the
PERTRAN diagnostics- syntactical errors- at time of execution.

(5]

s. Bi-iefly list the errors"round in logic when the program would not
run or output the correct results- logical errors.

6. Any :ﬁitional comments on assigned program &/or programming in
general.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

219

Appendix ki Group Walkthrough Rating Sheet

MAT/CIS 134 ' -
EVALUATION FORsl FOR WALK THROUGH IN GROUP

Author of Program
Reviewer
Assignment #

. Ssction

+ »
1 nNeuiris o
No lDon't Know Yes

1.Were reasonable variable names used? |1} 2| 314]5 6 |7

o

pu choose

g.Were sufficient and useful comments
provided? 11 2)31b|s5]6 7

3.Were spaces and blank lines. used
properly to produce a program with :
a pleasing format? 1l2]3j61546 {7

4.was the logic of the program
comprehensible., Could you follow
what vﬁ.s being done in the progflam;.;
Was this program easy to compr:hen
overall? 1{213|4)5(i617?7

5,¥as the algorithm a good choice? (ex

wes pid the mentod of solution overlook
some possible data choices; was it
too complicated for such a simple

prodlem? >~ vo- 112{3]us]lsléel?

6.Would it be easy for you to modify -
this program if the original problem
was altered slightly? 1]2|3]&fs51€17

7.Would you have been proud to have
written this prograzm? Would you find
it hard to improve this program? 12y 3t4]lsls]?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

220

Appendix L: Assigned Program Group Member Rating Sheet

MAT/CIS 134
ASSIGNED PROGRAM SUMMARY SHEET
Programmer's Name

Section
Assignmen

Circle the response you choose

Neutral or
No Con't Know Yes

1.Did you learn anything useful about
the FORTRAN language during the walk-
throughs with your group? 1j2)3j4fis51617

2.Did you learn anything useful about
programeing style during the group -
walk-throughs? 112{3l4ls]617?

3.Dc you modify your programming
behaviar to produce programs that
are well-documented (full of comments,
indentations) because they will be
read by others? 112 3|l s8] s16}|7?

4, How much time (approximately) did you spend in designing an
algorithm, transiating it into code, debugging and rewriting
this program? (in hours)

5. How much time did you spend in the terminal room to input and
run this program? (printed by computer at logout)

6. How mary run were necessary before this program “worked"?

(printed by computer as a gerdration
number after your filename.
Example; EGRQL . TAR.8 means 8 revisions/runs.

?7. Briefly list the errors that were found on this program during the
wallk-through sessions
Syntactical Errors: . Lozical Errors:

.g.
8. é%r g" a%ngcozfgegggegglgssigned program. group wilx-throughs,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

221

Appendix M: Midterm Examinations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

222

1 MAME Midt;gm FORTRAN MAT/CIS 138 Sprugl'82
RM A

I. (A) Identify each of the following FORTRAN statements as valid or
fnvalid, If it is invalid, identify theegrors by rewriting
The gtatement correctly.

1)- DATA KOUNT,KAT,KOOK/3%0/, A=8.2, B=-100,09

(2) DO K=1 TO 100 BY 1 A

(3) IF(.NOT.{A>2ERO) THEN A-B

(&) < CmAS-BB

(5)c “HELLO THERE" :

(6) X+Y = SQRT (A+B**2)

(7) FORMAT (X, *T"# FERE TODAT™) B
’ (8) READ (X,¥.(J%1,100))

(B) Identify each of the following as valid or invalid FORTRAN
variable names,

(1) MICKEY(MOUSE)___ (Z) LLEAP
(2) SET-UP (5) A2z
(3) .13 (6) TROUBLE

(C] Identify each of the following as valid or invalid FORTRAN
numeric input.

(1) 3,205 (4) 321E3
(2) 23/3 —_— (5) ~43,008E-10
(3) 400,94- (6) $1.98

(D) Translate the following formula (each single letter represents
a variable) into FORTRAN assignment statement. :

V-LY_Z_ - X+Ye2
(a+B)ET AR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

223

R .

AiRAN Statemant tnat calculated the reciproca. ~

_..4 s .. '. é FO . e ciproca
;fvuﬁ:%:;iégr_‘; f;g‘- RATTOWICS—ToTulsseL bu e iSac et nandoectnsg
VB=R =
For °x§2§§§r§§a§u¥§‘§/g = .111111 and your statement should produce .1l

NUMBER=8" .
Rectprggal is 1/8° = .125 and rounded to .13

1I)

' (a) What will be printed by this program in pseudocode using the
following data : -3,3,15,15,24,8,999 7
{b) Make up a pair of values for X and Y that will cause a problem
on output in this program. Explain how and why.

READ X
WHILE X=999 DO
READ Y
IF X=Y
THEN
X=X#*2
Y=(X+Y)/2
=200
ELSE
IF (X ¥)
THEN
Yzyes2
2=Y-X
ELSE
IF (X 0)
THEN
X=X/Y
ENDIF
Z=100
ENDIF -
ENDIF
PRINT X,Y,Z
READ X
" ENDWHILE

('TII) «rite a program in RORTRAN coce using good programaing style (as

much as time permits) to: .

*(a)input an array of integer value:z iess than 1000. The maximum size of
the arrzy is 100 and a value 2f 1223 will be usef to incicate the enc¢ ,
of input, !

(b) search the array ancé find anc print the value of the largest
item in %he array anc its subsssipt,
(e¢) find anc print the average of zil the pgsitive items in the array.

Rebroduced with permission of the copyright owner. Further reproduction prohibited without permission.

224

CIS/HAT 1734 FORT 3AN###MITTERM Soring 1982 ez Form B

Name
Part I . .
(a)Identify each of the following FORTRAN staements as yalid or invalie,
If it is invalid then rewrite the statement correctly or identify clearly
what the error(s) is.

’ (1) L0 KITTY=l TO KAT BY LITTER

(2)C *THIS IS WRONG -WHY?"

(3) IF(NOT(X¢(ZERQ) THEN TYPE®*, X

G) ACCEPI®, THE, ENTIRE, ARRAY
1)

(5) FORMAT (1X, THIS IS JACK'S HOUSE") -

(6) DATA (SALES (JAX),.JAX=3,10,2)/5,7.,0/

(7 A%B=C/D-E

(8) C=A*-B/KK

{b)Identify each of the following as valid or invalid FORTRAN variable

names.
_ (1) INTERST (2) B.123
© gywr ____ (4} RISING(MOON)
= (5) TEAL2 (6) SUM-UP
(¢) Identify each of the falowing as vald or invalid FORTRAN numeric
data input.
0 (1) 1234567 (2) -50000.32 .
7 (3)$1.98 (4) 3,864 :
(5)-5.301E=-55 (6) 1/2

(¢) Translate the following formula (each sirgle letter represents a
Qﬂ a variable) into FORTRAN assignment statement,

X = AsBeC - 4N
ABC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

225

.. ~

(E) Evaluate the following FORTRAN atatement given the following

values,
- Al BICIDIEIFIG
INK = ((A-B)/(C4D®%E)*F)/G si3l2f3lzfs]2 ®

(F) Perform the jollowing mixed mode arithmetic and write the
final value of the expression as it is stored in variable
named on left.

(1) Pz t#(7/2)
- (3) Q=FLOAT(4)+ 2.90+ IFIX(-4.6/2)

(2) l; 2.8%2

- (G)Write a one line FORTRAN statement that would round VALUE
(positive, real) %o the nearest {housandth, (Ex. if VALUE=
« 23.4888, it would become 23.489) .- .

(H) If VALUE= 123.456 , what would K equal after this FORTRAN
statement is executed?

K= NOD(INT (VALUE),10)+ MOD(INT (VALUE/10,10) + INT(VALUE)/200 ®

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

226

=
below using the following
what would be prim:ed by the program
L ")E’a‘:itlys. 8. 10, 10, 15, 5,

* b)Make up a pair of data values for X a.nd Y that this program will not
be abla to handle. Explain,

.

_. READ X
DOWHILE X # 959
READ Y

IP(X=Y)
THEN
X =Xoe2
Y= (X+Y)/2
E

IF (X))
THEN

Y.‘-Y'.z
XsY=X'

© I V.lrite a program in FORTRAN code using good programming style to:

-zero real values. The array will be of maximum
(“mpgt ax 3:§3§ :g :::o will be used to indicate the end of input.
?gz)geiréh the array to find and print the velue of the smallest item
?2‘};%33 2§§5§5§§§ge of all the elements in the array and print it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

227

Appendix N: Final Examinations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

228

MAT/CIS 134 -FORTRAN Final Sprinz 1982 FomA E. Grossman

NAME Section

I. Determine whether or rot éach of the following statements are valié
FORTRAN statements, If valid, write VALID., If incorrect, write a
gorrected statement.

(a) ARRAY(I,J)
(b) CALL_PRTagZR
ta ic) REAL SUBPOUTINE SQRT (A NTTHE)
d) IF(X.0R.(Y.E9.2)) GO T0 S0Q
(e) TFORAAT (IX, 5(AS5.3%,"SAYA HELLO"/))
Given the following matrix, BETA, write the type and format statements
needed © get the following output-
TR 5 4 s (F) perwuBumLzuIIvI7UIE
6 7 8 910
1% 12 13 14 15
16 17 18 19 20) ve7e ~
m
21 22 23 2k 25 g e ;
buors8
G3)

(h) Using a DO loop, write the statements necessary to print out the
diagnol items of the matrix, BETA.

Tell whether each of the following logical compounr evpressions are
TRUE or FALSE basec on the values of the variables.

SIGNAL FLAG 5 P Q A FIRST LAST
.TRUE, .FALSE. 5.0 3.0 10.0 32. ‘saAu’ "sYD'
) (¢) (G*P/Q.EQ.4.0).0R. (.NCT.(FIRST.GT.LAST))

(§) SIGNAL.AND.(Q.GE.P.OR.FLAG)

{K) P.GT.Q.AND'.Q.EQ.2%G.0R.Q.NE.A/3. AND.SIGNAL

w The foliowing statements appear in a FORTRAN procram after opening

a data file:
p READ(46,99)IDNO,KANE,GPA ,KLASS
» 99 FORMAT(12,AL,Fb.2,15)
If you were preparing the data file that was to be read by these
statements, how would you type in the following information to fit the
format described above?
Identification number({'IDNO)- 35
Class standing(KLASS)- 301
Name (NAME)= SAR
Grade Foint Average(GPA)~ 2.75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

229

.-

llf ASsume the values coming into the LIST array are 4,8,2,0,-1,10,3,929
{2%) Read the program and answer the questions helow. .

c CALLING MAIN PROGRAH
COMNON LIST
gNTi‘GL’R LI5T(200)

100 ACCEPT *,LIST(N)
IF(LIST(N)}.EQ.999) GO TO 200
N=N+1

GO TO 100
200 CALL REVERS(N-1)
TYPS*, (LIST(K) K=1,N-1)
STOP

N3

END

SUBROUTINE REVERS (SIZE)
CO:MON LIST
INTEGER LIST(200), SIz=

MIDDLE= SIZE/2
DO 100 I =1,MIDDLE '
CALL SWAP(LIST(I),LIST(SIZE+l-I)) -
100 CONTINUE
. RETURN END

SUBROUTINE SWAF(K,J)
INTEGER K,J,AUX -
AUX =&

K=J

J=AUX

RETURN

END

(a)#hat would be printec at the end of the calling ;?rogtar..? ,

(5T7hy was COM#ON not needed in SUEROUTINE SwAP?

(T] 7ihat is the relation between LIST in the subroutine RZVERS and in the
calling program?

(d)what is the relation between i in the subroutine SWAP and Z in the
calling program?

o Telation bets 100 in the calling prosras

[———
(e)#hat is the relation betwveen the statement
and the statement 100 in subroutine {EVERS?

Tt et e T el rees ey e ST
(f)How many times is the subroutine SWaP exccuted d g

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

230

Pt .

choose (A) OR (B) Write answer on back of test paper or use own
N paper- Make sure your name is on every paper you

(y@ hand in.

\A)Represent the cards jof a bridge hand by a pair of integers as done
in the class problem poker. Use a 4X14 matrix and leave the first
column blank (full of zeros) and let the ace be the fourteenth column.

(1)real a hand of 13 cards.

(2)Ccompute the number of points in the hand by scoring a & for each ace
a 2 for each king
a £ for each queen
a 1 for each jack.

. Do this in a gubroutine.

(3)In a subprogram function adé¢ 3 to the accumulatec¢ points for each
suit not present 1n the hand. Return the total points to the main
program where it will be printed.

EX: WD, 1B, 6@ 2, 1P 80, Jf-’. e¢. 0.z,

50. Ace@ Face value points -
Missing suit pomts - E tdu‘ss-s\
Total points - 15

Use a minimal of comment statements We are forced to compromlse
gf-oﬂ programmin ng style jn order to_perform will in tim
Q . Wr. Klaus is quite busy at thls time of the year %aking a toy
inve

ntory at the North Pole. He has a list of his 5 elf divisions and
the amount to to ys each division procuced for each month thisyear,

F M A .y IR JY AT N

ELF DIVISION 1 ;.w 12 {iso{bel {7u Mus m ny m 123 ..4
ELF DIVISON 2 [48b|2t4#|n2iso3 =
EIF DIVISTON 7 {ay
EZF TIVISON & 1o i
ELF DIVISION 5 jf% }

a)telp him by loiding (input)this matrix - be sure to give specific
directions on how data is to be typed.
b)Using nesied DC loops calculate the average number of toys pracuced
each month and put them into an array (l-dimension).
c) Write a subroutine to arrange the average array in descending order .
) In the main program print the number of the month that has the highest
average -~ (Next year the elves will all get a vacation durins this month)
) How would you modify this program © find the total numbar of toys
in the inventory?

tn o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

231

MAT/CIS 13% FORTRAN Final- Form B Spring 1982 E. Grossman
Name Section

I. Determine whether or not each ofthe following statements are valid
FORTRAN statements. If valid, write VALID. If incorrect, write a
corrected statement.

(a) FORMAT (1X, 3(A5,3x "IS THE ANSAER"//))
(v) ARRAY(R,C)

9 () CALL PRTERR
(a) IF (X.EQ. 1.0R.2) GO TO 100

(e) INTEGER FUNCTION (LIST,SIZE)

.. Given the following matrix, BETA, write the type anc format statements
needed to get the following output.

BETA
12 3 4 5 (f) ¥pjpsk
6 7.8 510 YEY69
11 12 13 1k 15 b13¥ls
16 17 18 19 20
(¢f) Y1B¥1LBY7¥BLYD1EMYS
oD

(l)Consider the folilowing instruction:

DATA (ALPHA(R.C)yc'l'BXR=lta/u15»6v7v§vg/ . . =
How would this data be stored? Iraw a picture of the matrix with the data
stored in it.

Tell whether each of the following lOgical COmMPOUNC eXpressions
are TRUE or FALSE basecd on the values of the variables.

A B C_I _J _¥X _PINK RED _NAMEY NAWE2
1.02,0 3. 5 10 0 .TRUE., .FALSE. ‘JOE' ‘JON'’

(L) (A%B/C.E2.K).OR..NOT. (NAMEL.GD,NANEZ)
(&) PINK.AND.(G.GT.B.OR.RED)

@

I

() A.GT.B.AND.B.EQ.2*A.OR.K.NE.J/10,ANC.PINK

A ————

.. The following statements appear in a FORTHAN pfo ram after opening
(5) a cata file: " € i Fensng

READ (44,99 }ILNO ,NAKE ,GPA XLASS

@) 99 FORWAT(I2,Ak,7L.2,15)
If you were preparing the data file that was to be rea? oy these
Statements, how would you type in the following information to it the

format described atove?
Identification number(iLi0)- 33
Class stancing{:lASS)= 301
flame (NANME)- . GA
Grace Point Average(GPA)- <.75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

232

ﬂ’/ Assume the values comingz into the LIST array are 4,8,2,0,-1,10,3,939
(25) Read the program and answer the questions helow, .

c CALLING MAIN PROGRAi{
COMMON LIST
INT%’JE’R LIST(200)
N=

100 ACCEPT *,LIST(N)
IF(LIST(N}.EQ.929) GO TO 200
N= N+l

GO TO 100

200 CALL REVERS(N-1)
TYPE* (LIST(K),K=1,N-1)
STOP

END

SUBROUTINE REVEZRS(SIZZ)

COXLION LIST

INTEGIR LIST(200), SIZE

MIDDLE = SIZE/2

DO 100 T =1,HIDDLE

CALL SWAP(LIST(I),LIST(SIZZ+l-I))

100 CONTINUE

RETURN END

SUBROUTINE SWAF(K,J)
INTESER K,J,AUX
AUX=X .

KeJ

J=AUX

RETURN

END

(a)What would be printed at the end of the calling grogram?

(577hy was COiON not needed in SUBROUTILE SWAD?

vt e e vt ——

e YIS D T the LB ing REVESS R I ine
(c) “hat is the relation .between LIST in the subroutine RIVZRS a in

calling program?

(d)/hat is the relation between XK in the subroutine SWap
calling program?

and X in the

- - ——

(e)iWhat is t-;m_;“;elation between the statement 1CC in the
and the statement 190 in subroutine REVIRS?

calling progran

IR i e St S e R {T AR
(T)vt’;):d“:'nany times is the cubroutine SwWAP exccuted during

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

233

. Choose (A) OR (B) Write answer on back of test paper or use own
(ys) paper~ Make sSure your name is on every paper you
hand in.

(A)Represent the cards jof a bridge hand by a pair of integers as rone
. in the class problem poker. Use a 4X14 matrix and leave the first
column blank (full: of zeros) and let the ace be the fourteenth colum.
(1)real a hand of 13 cards.
(2)Compute the number of points in the hand by scoring a 4 for each ace
a 3 for each king
a 2 for each queen
a 1} for each jack.
.. Do this in a subroutine.
(3)In a subprogram function add 3 to the accumulated points for each
suit not present in the hand. Return the total points to the main
program where it will be printed.

e: 29, 12, 18, 60 1, 10D, G I8 4. D.x .
2

50, AceSr. Face value points - . ®
Missing suit points - 3 (Qhuss-s'\

Total points - 15

#Use a minimal of comment statements* We are forced to compromise -

« pgrod programming style in order to perform will in %im
égs . Mr. Rlaus is guite busy at this time of tne year taking a toy

inventory at the North Pole. He has a list ofhis 5 elf divisions and
the amoun®t to toys each division produced £or tach month thisyear.
J . F M A .5 1= JIY AT N T

ELF DIVISION 1 ¥ {j2xlis01D6t {70 | Pet |05 | 7y | i § 109 | 023]s
ELF DIVISON 2 #fL]3t%]nalaes e
ETF DIVISION 3 |9y
ELF DIVISON U o
EZY DIVISION 5 {88 |

a)Help him by loading (input)this matrix - be sure to give specific
directions nn haw data is t9 be tvped.
b)Using nested DO loope cl--ulate the average number of toys profuced
by each elf division and put them into a one-cimensional array.
¢)irite a subroutine to arrange the averaze array in ascencing order.
2)In the main program print the number of the elf fivision that has the.
highest averaze . (Next year these elves will ride in the sled)
e)How would you modify this program to finé the total nunber of toys in.
the inventory?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix 0O:

Frogramming Assignments

ASSIGNMENT =1

REAL HOURS, RATZ, TAX, GRUSS, NET

CIS/AT 134

Consider the following program:
00100 © YOTR NAME
00200 ¢

00300 C DECLARATICN STATRMENT
08300

305CC €

0060C C FORMAT STATZMENTS

00700
cogoo
00%0C
01000
01100
01200
01300
01400
01500
01600
01700
01800
01200
Q2000
02100
02200
02300
02400
02500
026C0
02700
02800

Using

indicate each step on -your printous,

usage

HCURS WORRED')
)

INTZIR NUM3ZER CF
AY *

RATE

00100 FCRMAT (11X, 'PLZASZ N
00200 FORMAT (1X,°*PLEASE ZNTEZR P
c
C DATA INITIALIZATICN
DATA TAX/25.00/
¢
€ INPUT PATA
TYFE 100
ACCEPT *,HOURS
TYPE 200
ACCEPT *,RATZ
c
C CALCUIATE GROSS PAY
GROSS = HOTRS * RATE
NET = GROSS - TAX
¢
‘C CUTPUT RZSULTS
t *,GROSS
TYFPE ¢,NET
c
STOP
END

the program akove, perform the following procedures.
Refer to yocur notes on terminal

while doing this,

1. LOGIN
2, CREATET a gource file for your progran,

(use FLLIN,FCR

3. Znter your program lines,
s (correct any typing errors using CTRL/T or DI

4, ZECUTE

your zrogzam,

S. EDIT your programe.
Maxe the folloving changes while in EDIT mode,

(A)
(35
(¢)
(2)

Pri=e line 00700

"y

Paleres line 02000

Chance line 02100 to
02100

(use S command)

Z) Renlace line C2400 bv

(
(FT) Rmplace line Q2530 by
(

~—~vDs

-as o

02400

|

¢2s00 TVPeS

G) Insars line 00820

(8) Save the nev file
6, TYPZ out your new program,

7. ZXECUTE your nevw prigram.
8. Licgeur,

gor vour filenaxze)

+« lines 01400 =0 017CC

NET = (HCCRS * RATE) = TAX

300
*, ECTRS, RATZ, NET.

00850 PFCRAAT (1X, "HOURS*,15X, "2ATE ', 18X, XET

Clearly

PAY')

234

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

235

WAT/CIS L1
1782

E. Qrossman
Assignment 42

Check outline for due date.
Text page 39/problem 1D with some additional requirements:

write a program,using good programming style, to input

three data items into variabuies X,Y, and Z and find and print
with the proper identifying comments their

a)procduct

b)sum . .
c)the largest of the three values. Hint: Use an additional

variable named LARGE which should always contain the
largest of the data items checked so far.

Test your program with the foliowing data:
(It will be necessary to run-EXECUTE- the program 5 times- once

(agog eagg)sgt of d?:?)us (9) -10 (e) 1 :
5 6.77 6.054.3 =05 --05
5 6 o 1/3 ~2AES -.002
MAT/CIS 134 _ASSIGNMENT#3 . EG
123/3K

Write a program to read in a collection of exam Scores ranging in
value from 1 to 100, use an. appropriate sentinel value to indicate
the end of input, and count and print the total number of scores,
and the number of outstanding scores (90-100), the number of
satisfactory scores (60-89) and the number of unsatisfactory
scores (1«59). Test your program with the data in the text

and don't forget to use an endcode.

Also calculate and print the average exam sScore.

This program should employ DOWHILE and IFTHENELSE structures,
'creaming off the top' procedure and a cumulative sum.

Let's write it in pseudocode nNow......

Re - . - . - .
produced with permission of the copyright owner. Further reproduction prohibited without permission

. 236

map/cIs 134 ASSIGNMENT #4 E. Grossman

178/

Run this program twice - once with the data in text and again with

the data given below.

Note: For each run be sure to print out a request to read in & walue
indicating how many lines of data there are.

Bmploy library functions and the DOUNTIL atructure (PORTRAN code-
DO loop). Round off to the nearest pemny. Make sure to have data in
neat tabular form with columns & headings of table clearly worded, for

output.
* Second met of data (fsr second run):
loan in $ Months Rate in %
1,000,000 12 18
7.500 60 1l.1
100 120 13.26
MAT/CIS 1% ASSIGNMENT #5 E. Grossman

Text: Page 231/ 5M

This is a problem that could be broken down into several parts - each
part is ‘attacked' separately and then united when each part is correct.

Part (A) Input 3 arrays using a DOWHILE -(since a sentinel value
is used)and output a neat, clearly headed table of
three columns using a DOUNTIL structure, {-If you counted
the number of households as they came in)

Part (B) Calculate the average household income using DOUNTIL
and cumulative sum.

Part (C)-Search'the household income array for all that exceed the
average household income and print them out in neat tabular
form with proper heading (Entitle the table and then
haye two columns headed -~ ID NO INCOME etc.)

Part (D) Determine the percentage of households below poverty

income « search the array testing each income to see if
it is below tEg poverty level (using the formula in text) and

- elow
then, ﬁercentage - £ _of households of income A poverty . 100
i o of households

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

237

JATZCIS 134 ASSIGNMENT /6

Each person employed by tie Terrific Terminal for Today company is .
<trongly enccuraged to meet a minimum level of sales of $10,000

.in oL inal sysiecs each month. The person who meets this minimum
leves is paid a base salary each month of $1000 plus a cocded percent
commission on all sales exceeding $1Q000. If the code for the commission
is 1 - that salesperson receives 3% commission 3 if the code is 2
that salesperson receives 5% commission.

Those who do pot meet the minimum in sales are paid $300 plus 2% of
his/her sales for the month.

The outstanding sales persons who sell more than $15,000 worth of
terminal systems are paid an additional bonus of 104 of all their
sales over 315,000, .

The data for each salesperson will consist of a 5-letter name, the
amount of that month's¥ sales and a commission coce.

fut the names into a NAME array and the corresoponding sales and code
into a SALES array and CODE array. Compute the monthy salary for each

salesperson using multiple decision-alterna tive structure (IN CASE) and
logical compound expressions. rut the salaries ‘nto a corresponcing
SALARY arpy. Use.a SORT rantine on the salaries dnd put them into
ascending order (Lowest fiPs¥). Don't forget to move the NAME array
SALES array and SALARY array in the sort.

Jutput a 3- .column table with the results using proper headings and
listing_the. salaries_in the table in ascending order..

SALESPERSON SALES - SALARY
Use the following data and _make up 5 more names with sales and codes

Hame SALES CODE
SMITH 14999.99 1
JONES 9000,00. 2
COOP 456.76 2
RAY 23456.78 1

| LOVER 21111.11 1

['eclare names to be integer mode and linit <them to 5 characters.

.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

238

pAT/CIS 134 " PROGRAMALNG ASSIGNMENT ? EG

A_ TEAM Programmigg Projnret: subgrogramming

Your team - should break the program below down into modules and

each member in the .. should take one or more modules to code
~ and test.
During this week () code your module(s} and leave a listing

- f your
e code in the terminal room - a copy for each member o
:f-ozg (put their name on their copy). Also pieck up the listii.ng

of code of other modules done by the other tean’) members (with
your pame written on the copy). Read and crrvique each listing
and when the class meets () you can meet with your tean

and exchange ideas and help each other debug each mocule pertre
you attempt to run them. D

ext week ' } put your corrected, coded module(s)
E:r}?geﬂi: 't‘he computgr , make up data and test the module. You
will probably have to add lines to test your module(s) and later
you will have to delete those lines and prehaps add other lines
of instruction in order to run the module(s) with the actual

data.

i he class meets () bring in the runs of your module(s)
53; ggep:oblems to the tean exchange and critique each. Run .

ti rogram during the next week () linking each
:A:;b::':t:ogul% by umgg the command: EXECUTE PROG1.POR,PROGZ.FOR, etc.

Actual data for the update will be on file to be specified later.

13BT-IGB2 __— COLLEGE EWROLLMENT
SESSION

. FALL SPRING SUMMER v

C DB 3578 3765 1988

A yT 1456 1768 980

M YN 1896 2005 1143

P wp 658 567 333

v ¥ Ls6 35 202

S Bx 78 657 9k

i e attending

2:2; g:m:uzag?ezgglgegéig}laging hov-u uc%i‘ge;:ufo;t:haer;cademic year.

puring the year this table needs & constant update as students
register and stpudents drop out. .

Program Modules)

A) Main calling program -~ introduction and description of program

and all variable names used; organize calls and referesnces to

subprograms with proper mode and order of arguments,

Subroutine~ IRPUT - the data from enrollment table - include

instructicis on kow to type in data,

C) Subroutine = DISPLAY - the matrix table of enrollment,

D) Subroutine « Input REW data = from a data file and updatr~

matrix, Include check for data errors,

Z) Punction ~ Calculate the number of students on each campus,
Type those values with appropriate identification in the
subprogram and zeturn to the pain program the total number
of students attending by campus,

P) Punction. - Calculate the number of students attending each
session, Type those values in subprogram with appropriate
identification and return to the main program the total of
students attending by session,

G) Main program should print out the total enrollment results from
(E) and (P) amd make sure that they are the sanme.

H) After Updats is completed (D), display the nev matrix,

~

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

239

Attitude Toward Computers and Computer

Appendix P:
PP Frogramming Survey

FAT/CIS 12
COITPUTZR ATTITUDE SURVEY

Section

Please check the box that most accurately reflects how you feel about
4he statements to the left,

DISAREE!
"R

lenwornsLy] cisuoaes [vrrmvine [scaea{ sreovsey
AGRsE AGREE
o

1. Computer programming is an important skill
40 have for future job oppvortunities.

2. I try to avold working on my computer programs
until the last minute. They are my least
favorils essignments.

3. Computers are not very useful because they
are always breaking down or making mistakes.

&. Computers are fascinating and exciting
to work with.

5. 1 become frightened and panicky at the
thought of having to write a coxmputer progran.

6. I will try ¢o avoid working with eomputers
in my future job.

7. Computers will help to bring about a better
way of life for the average person,

8. Computer programming seems to be a fairly
useless skill,

9. Comguters are extremely accurate, efficient
and reliable.

10.1 always look forward to working on my
cozputer programming assignments.

1l.Computers are important for the efficient
operation of large and small businesses.

12.1 hestitate woring with computers because
they are strange and anxiety-provokirs,

13.1 find that discovering solutions to
programmins poublens is a lozical process.

lb.Svery college student should be requirec
to take a ccurse in computer Frogramming.

i?eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15, I view programming as a stimulating and
challenging activity.

240

>
. STRONGLY | DISAGREE | NEITHER CE| STRONGLY
DISAGREE ASREE ASREE -
"R
815,

2b. I find that trying to get my program to
run on the computer is a frustrating ordeal,

17. It seems to me that a programming class
motivates students to cheat - they copy other
people’s programs ané hand them in.

14. One cannot use what is taught in this
course outsice of a programming environment.

- — - —

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

